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Preface

One hundred years ago, Russian mathematician and physicist Alexander A. Fried-
mann applied the system of Einstein equations to the three-dimensional sphere with
a time varying radius. In this way, he obtained a nonlinear ordinary differential
equation which is called the Friedmann equation after him and serves now as a cor-
nerstone of the standard cosmological model. Unfortunately, it is well known that
this model exhibits a number of paradoxes. Thus, the main goal of the CSS 2022
conference is to discuss whether and how the Friedmann equation can be applied
at the various spatial scales, from our local cosmic neighborhood up to the whole
Universe; and if the existence of dark matter and dark energy are merely artifacts
of the excessive extrapolations. So, it is timely to gather specialists from various
branches of astronomy and astrophysics to discuss these issues.

To shed more light onto these topics, we decided to organize the International
Conference Cosmology on Small Scales 2022: Dark Energy and the Local Hub-
ble Expansion Problem. It is held at the Institute of Mathematics of the Czech
Academy of Sciences at Žitná 25, Prague 1, from 21 to 24 September 2022 (see
css2022.math.cas.cz). It is a continuation of our three previous conferences Cos-
mology on Small Scales 2016: Local Hubble Expansion and Selected Controversies
in Cosmology, Cosmology on Small Scales 2018: Dark Matter Problem and Selected
Controversies in Cosmology, and Cosmology on Small Scales 2020: Excessive Ex-
trapolations and Selected Controversies in Cosmology (see css2016.math.cas.cz,
css2018.math.cas.cz, css2020.math.cas.cz).

The main topics of the conference “Cosmology on Small Scales 2022” are:

. Mathematical aspects of the extrapolations used in cosmology

. Arguments for and against dark energy, and revisiting the foundations of
physics

. Alternative models for dark matter and dark energy

. A systematic discord in the value of the Hubble constant derived by different
methods

. Theoretical possibility and observational evidence for small-scale cosmological
effects

. Quantum effects on the early Universe and their observational imprints at the
present time

This book includes only a small portion of the reports, because other works
were either already published or submitted for publication elsewhere. At the end of
the Proceedings, there is a couple of papers on “alternative cosmological theories”.
Although they may be questionable and the Scientific Committee is not responsible
for their content, we believe that it is reasonable to present them to the wide audience.
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Abstract: Scale invariance is expected in empty Universe models, while the
presence of matter tends to suppress it. As shown recently, scale invariance
is certainly absent in cosmological models with densities equal to or above
the critical value %c = 3H2

0/(8πG). For models with densities below %c, the
possibility of limited effects remains open. If present, scale invariance would be
a global cosmological property. Some traces could be observable locally. For
the Earth-Moon two-body system, the predicted additional lunar recession
would be increased by 0.92 cm/yr, while the tidal interaction would also be
slightly increased.
The Earth-Moon distance is the most systematically measured distance in the
Solar System, thanks to the Lunar Laser Ranging (LLR) experiment active
since 1970. The observed lunar recession from LLR amounts to 3.83 (±0.009)
cm/yr; implying a tidal change of the length-of-the-day (LOD) by 2.395 ms/cy.
However, the observed change of the LOD since the Babylonian Antiquity is
only 1.78 ms/cy, a result supported by paleontological data, and implying a
lunar recession of 2.85 cm/yr. The significant difference of (3.83–2.85) cm/yr
= 0.98 cm/yr, already pointed out by several authors over the last two decades,
corresponds well to the predictions of the scale-invariant theory, which is also
supported by several other astrophysical tests.

Keywords: cosmology, dark energy, Earth-Moon system

PACS: 98.80.-k, 96.25.De, 96.90.+c

1. Introduction

The scale-invariant theory aims at responding to a most fundamental principle
expressed by Dirac [11]: “It appears as one of the fundamental principles in Nature
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that the equations expressing basic laws should be invariant under the widest possi-
ble group of transformations”. Our objective is to explore whether, in addition to
Galilean invariance, Lorentz invariance, and general covariance, some effects of scale
invariance would also be present in our low density Universe. This is particularly
justified since scale invariance is present in Maxwell’s equations in absence of charges
and currents, while in General Relativity (GR) scale invariance is a property of the
empty space in absence of a cosmological constant, a property pointed out by [4].

Clearly, the presence of matter tends to kill scale invariance as shown by [17].
Thus, the question arises about how much matter in the Universe is necessary for
suppressing scale invariance. Would one single atom in the Universe be enough to kill
scale invariance? Clearly, we do not know whether this is the case, but the way to get
an answer to the above questions is to carefully examine the theoretical consequences
of this assumption and to perform comparisons with observations. From the scale
covariant expressions of the Ricci tensor, curvature scalar and general field equation
developped by [11] and [7], cosmological models were obtained by [23] who showed
that scale invariance is clearly forbidden for models with matter densities equal and
above the critical density %c = 3H2

0/(8πG). This result was found consistent with
considerations [30] on causal connexion in Universe models.

These models also indicate that, as soon that one considers models with a den-
sity parameter Ωm > 0, scale-invariant effects are drastically reduced, before totally
disappearing at Ωm = 1. For a Universe model with Ωm = 0.3, they are nevertheless
sufficient to drive a significant acceleration of the expansion. Several positive results
have been obtained, e.g. on the distance modulus vs. reshifts z relation, the Hubble
rate vs. age and density parameter, the H(z) vs. z relations, even if due to the
observed scatter the discrimination from the ΛCDM is difficult at present [23], [28].
The growth of density fluctuations is accounted for without the need of dark mat-
ter [27]; the same for the observed mass excess in clusters of galaxies [24]; and the
radial acceleration relation for galaxies is reproduced [29]. For a brief summery of the
Scale Invariant Vacuum paradigm and its main results and current progress see [20].

The question whether astrophysical systems, such as the solar system and galax-
ies, follow the Hubble-Lemâıtre expansion has stimulated a vast literature since the
pioneer work of McVittie [33, 34] and the Einstein-Straus theorem [16]. The presence
of an expansion at smaller scales has been considered as an open question by Bon-
nor [5] and recently revisited by us [31]. The fact that the dark-energy dominates
the matter-energy content of the Universe and that this energy appears as driving
the acceleration of expansion is reviving the interest in the question: If dark energy
is uniformly distributed in space would it not imply effects that may be present at
small scales? The Earth-Moon system occupies a particular place in this context,
since there are direct accurate measurements of the evolution of the distance in this
two-body system.

It is thus appropriate to examine whether there are some local effects of scale
invariance, e.g. in the Solar System. According to several pioneer works [14], [15],
[22], [26] the local effects in the Solar System due to scale invariance would have been
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of the order of the Hubble-Lemâıtre expansion or some fraction of it. (The Hubble-
Lemâıtre expansion with H0 = 70 km s−1 Mpc−1 corresponds to 10.7 m/yr for one
astronomical unit, or 2.75 cm/yr for the Earth-Moon distance of 384 400 km). For
the proper interpretation of these effects in the scale-invariant context, it is necessary
to account for the limitations of the λ-variations due to a significant matter density
in the Universe, and this implies a refined analysis, which we do here.

Section 2 briefly recalls the main points of the scale-invariant vacuum idea. Sec-
tion 3 examines the limitations of the scale-factor λ and their impact on timescales.
In Section 4, we study the weak-field low-velocity approximation of the scale-invariant
field equation and the two-body problem. In Section 5, we compare the predicted
and observed lunar recession from Lunar Laser Ranging (LLR) in relation with the
data on the length-of-the day (LOD). Section 6 gives the conclusions.

2. Some points on the scale invariant vacuum (SIV) theory

Some recalls on the scale-invariant framework have been given recently [30], with
references therein. In short, the theory is expressed in the cotensor framework appro-
priate to the Integrable Weyl Geometry developed by [11] and [7]. The developments
are rather parallel to those of General Relativity (GR), but with the possibility of
conformal scale transformations of the form,

ds′ = λ(xµ)ds , (1)

in addition to the general covariance. Primed quantities refer to the GR framework,
while quantities without a prime refer to the scale covariant context. Scale covariant
first and second derivatives, scale covariant Christoffel symbols, Riemann-Christoffel
cotensor, Ricci cotensor and total co-curvature have been developed in the Integrable
Weyl Geometry by [11], leading to a general scale covariant field equation [7].

In GR, one needs to define the line element corresponding to the physical system
studied, for example the FLWR line element is adopted for expressing the cosmo-
logical equations in a homogeneous and isotropic Universe. Similarly, in the scale
covariant context, an additional condition is necessary to fix the gauge. Dirac and
Canuto et al. had chosen the then in vogue “Large Number Hypothesis” [12]. We
prefer to adopt as basic gauging condition the following assumption: The macro-
scopic empty space is scale invariant, homogeneous and isotropic. This is a simple
and most reasonable assumption, which is consistent with the scale invariance of the
equations of Maxwell and of General Relativity in empty space, as recalled in the in-
troduction. Moreover, the equation of state of the vacuum pvac = −%vacc

2 is precisely
the one equation permitting the vacuum density to remain constant for an adiabatic
expansion or contraction [9]. We also note that the assumption of homogeneity and
isotropy appears a reasonnable one for the macroscopic empty space.

Within the cotensor framework, our gauging condition can be expressed as fol-
lows [23],

κµ;ν + κν;µ + 2κµκν − 2gµνκ
α
;α + gµνκ

ακα = Λ gµν . (2)
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It is what is left from the scale covariant field equation if space is empty1. The
first member (LHS) results from the scale invariant form of the Ricci tensor [11].
The second member (RHS) contains only the cosmological constant Λ in the scale
covariant form, with

Λ = λ2ΛE . (3)

ΛE is the cosmological constant in GR. The first member of Eq. (2) contains terms
depending on κν , the coefficient of metrical connection, related to the scale factor λ
of Eq. (1),

κν = −∂ lnλ

∂xν
. (4)

We note that if the scale factor λ is a constant, all terms in κν vanish and Eq. (2)
implies ΛE = 0. This means that the scale-invariant field equation just becomes the
field equation of GR without a cosmological constant.

For reasons of homogeneity and isotropy of the empty space, the scale factor λ
should depend on time only, so that the only non-zero component of κν is κ0,

κν = κ(t) δ0ν , κ0,0 =
dκ0

dt
= κ̇0 = κ̇ . (5)

In Weyl’s Integrable Geometry, κν is playing a fundamental role alike the gµν . From
the time and space components of Eq. (2) one obtains:

3
λ̇2

λ2
= λ2 ΛE and 2

λ̈

λ
− λ̇2

λ2
= λ2 ΛE . (6)

Thus, the gauging conditions leads to analytical relations between the scale factor λ
and the cosmological constant, which represents the energy density of the vacuum.
These differential equations give a new physical significance to the cosmological con-
stant, which now appears as the energy density of the relative variations of the scale
factor, see the first of Eqs.(6) and [30] for its connection to inflationary stage of the
very early Universe. The solution of these differential equations is

λ(t) =

√
3

ΛE

1

ct
. (7)

We take the present time t0 = 1 and also consider the present scale as a reference to
which all scales are referred to. Thus, λ(t) may be written as,

λ(t) =
t0
t
. (8)

1The de Sitter metric for empty space with ΛE is conformal to the Minkowski metric, and is
identical to it for the condition 3λ−2/(ΛEt

2) = c2. This condition is consistent with the solution (7).
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1.494

Figure 1: The values of the scale factor λin = 1/tin at the initial time tin = Ω
1/3
in , as

a function of the density parameter Ωm. The yellow zone shows, at each value of Ωm,
the range of λ(t) from the Big-Bang (broken red line) to the present time (continuous
red line). The blue arrow illustrates that for Ωm = 0.3, the value of λ(t) varies only
between 1.494 at the origin and 1.0 at present. We see the drastic reduction of the
effects of scale invariance with increasing Ωm.

Remarkably, the gauging condition, which implies the two equations (6), lead to
major simplifications of the cosmological equations derived by [7] on the basis of the
general field equations. One obtains [23]:

8πG%

3
=
k

a2
+
ȧ2

a2
+ 2

ȧλ̇

aλ
, (9)

−8 πGp =
k

a2
+ 2

ä

a
+
ȧ2

a2
+ 4

ȧλ̇

aλ
. (10)

On the right side of both, we note an additional term. For a constant λ, Friedmann’s
equations are recovered. A third equation may be derived from the above two,

− 4πG

3
(3p+ %) =

ä

a
+
ȧλ̇

aλ
. (11)

Since λ̇/λ is negative, the extra term represents an additional acceleration in the
direction of the motion. Thus, the effects of the scale invariance are fundamentally
different from those of a cosmological constant. For an expanding Universe, this extra
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force produces an accelerated expansion, without requiring dark energy. For a con-
traction, the additional term favors collapse. This is exactly what the corresponding
term in the weak-field approximation is also doing, as verified in the study of the
growth of density fluctuations [27]. There, the additional term favors contraction
and allows an early formation of galaxies in absence of dark matter.

3. Limits on the variations of the scale factor

3.1. Solutions of the cosmological equations for k = 0

Analytical solutions for the flat scale-invariant models with k = 0 have been
obtained by [21] in the case of matter dominated models, with the corresponding
equation of conservation,

a(t) =

[
t3 − Ωm

1− Ωm

]2/3

. (12)

It is noticeable that an analytical solution exists. It is expressed in the timescale
where at present t0 = 1 and a(t0) = 1. Such solutions are illustrated in [23] and [30].
Along with Ωm = %/%c with %c = 3H2

0/(8πG) as usual. There is no meaningful
scale-invariant solution for Ωm equal or larger than 1, consistently with causality
relations [30]. We see that the initial time when a = 0, the Big Bang, is at:

tin = Ω1/3
m . (13)

This dependence in 1/3 produces a rapid increase of tin for increasing low matter den-
sity. For Ωm = 0, 0.01, 0.1, 0.3, 0.5, the values of tin are 0, 0.215, 0.464, 0.669, 0.794.
Since λ ∼ 1/t, this leads to a strong reduction of the range of λ(t)-variations for in-
creasing matter densities as illustrated in Fig. 1. While the range of scale variations
is infinite between the Big Bang and now for an empty Universe model, the range
would be very limited for significant Ωm-values, for example from only 1.494 to 1.0
for Ωm = 0.3. The Hubble parameter, in the same timescale, is

H(t) =
2 t2

t3 − Ωm

. (14)

Thus, H0 = H(t0) varies between 2 and the infinite for Ωm between 0 and 1. We also
write

Ωk = − k

a2H2
0

and Ωλ = − 2

H0

(
λ̇

λ

)
0

=
2

H0 t0
. (15)

These are respectively the normalized contributions (vs. %c) of the matter, space
curvature, and scale factor λ. With these definitions equation (9) leads to,

Ωm + Ωk + Ωλ = 1 . (16)

These quantities are usually considered at the present time. In the case of energy-
density dominated by radiation and relativistic matter, for flat scale-invariant models
with k = 0, analytical solutions for the expansion factor, the matter density, the
radiation density and temperature have been obtained by [25].
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3.2. Some essential properties of the scale-invariant solutions

Let us further examine the conditions of applicability of the above results:

1. Case of λ(t) for homogeneous and isotropic Einstein-like empty space, but
not necessarily empty Universe with homogeneous and isotropic cosmological
space. The two equations (6) and their solution (7) for λ(t) have been derived
for the macroscopic empty space, under the assumption that it is homogeneous
and isotropic, which implies a dependence of λ on time t only. The empty space
obeys an equation pvac = −%vac c

2 and in the scale-invariant theory the vacuum
density is also related to the cosmological constant by Λ = 8πG%vac. For
Ωm = 0 one has λ = 1/t and a = t2 and the cosmological equation (11) then
implies 3p+ ρ = 0, which is the trace of the matter energy-momentum tensor.

Alike in GR, the properties of the vacuum and thus of the cosmological constant are
intrinsic characteristics of the vacuum space, not depending on any matter content
and distribution, and so was it also in the derivation of Eqs. (6). Thus, these equa-
tions and their solution apply everywhere in the Universe, independently of Ωm. As
a consequence, the solution λ(t) is a universal function, characteristic of the empty
space. Let us note that the energy density of the empty space can be expressed in
term of a scalar field ψ,

% =
1

2
C ψ̇2 with ψ̇ = κ0 = − λ̇

λ
(17)

with the constant C = 3/(4πG). The field ψ obeys a modified Klein-Gordon equation
and ψ is advantageously playing the role of the “inflaton” during inflation [30].

2. Case of λ(t) in presence of matter. The presence of matter could be viewed
as space inhomogeneities below certain scale but absent at larger scales and
especially at cosmic scales. The presence of matter is determined by the density
parameter Ωm = %/%c, which influences the interval of time between the initial

time tin = Ω
1/3
m and t0 = 1. For a higher Ωm-value (between 0 and 1), the

interval (t − tin) is smaller and so does the range of the λ-values. In this
indirect way, the presence of matter drastically reduces the range of variation
of the scale factor λ (Fig. 1). Most importantly, we easily verify that in the
scale-invariant context (Section 3.1), Ωm does not change during the evolution
of the Universe, both in the matter and radiation eras. As long as the radiation
era is very short and negligible compared to the full age of the Universe, then
the initial time tin defines Ωm as a constant for the Universe.

Thus, steps 1 and 2 show that the function λ(t) has a form which is universal
λ(t) ∼ 1/t, but the range of the time variations, and thus of λ, is strongly lim-
ited by the matter content.
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3. Case of λ(t) for comoving galaxies. Now, comouving galaxies have the same
timescale and thus the same age (the cosmic time). Thus, the λ(t) parameter,
its first, second derivatives and the coefficient of metrical connection are the
same in all comoving galaxies:

κ(t) = −λ̇/λ = 1/t . (18)

Therefore, we are led to the following global conclusion: The universal function λ(t)
and its limitations apply the same way in all comouving galaxies . Thus, the effects
of the variations of λ(t) with their limitations could also be expected locally, e.g. in
the Solar System, which is a low velocity subpart of a comoving galaxy.

3.3. Relations between timescales

We have two different timescales (both concerning the cosmic time): (1.) The

age t of the above cosmological model, with t0 = 1 at the present time and tin = Ω
1/3
m

at the origin. (2.) The usual timescale τ , with τ0 = 13.8 Gyr at the present time [18]
and τin = 0 at the Big-Bang. The relation between ages in the two timescales is,

τ − τin

τ0 − τin

=
t− tin
t0 − tin

. (19)

This means that for an event at a given epoch, the age fraction with respect to the
present age is the same in both timescales. This gives the two following relations
between particular times t and τ ,

τ = τ0
t− tin
t0 − tin

, and t = tin +
τ

τ0

(t0 − tin) . (20)

For the derivatives of these two timescales, we have,

dτ

dt
=

τ0

t0 − tin
, and

dt

dτ
=

t0 − tin
τ0

. (21)

These derivatives have constant values, implying that the two times are linearly
connected. For larger Ωm-values, tin is also larger (13) and the timescale t is squeezed
over a smaller fraction of the interval [0,1] as [tin, t0 = 1]. The above expressions are
useful to express the relative variations of the scale factor λ(t) as function of ages.

4. The dynamical equation and the two-body problem

4.1. The weak-field low-velocity approximation of the equation of motion

This approximation in the scale-invariant framework is leading to a modified
expression of the Newton’s Law [26], [24]. In spherical coordinates, it is

d2r

dt2
= −GtM(t)

r2

r

r
+ κ(t)

dr

dt
. (22)
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This expression for a weak field is derived from the geodesic equation by Dirac in
the reference [11], which was also obtained from an action principle by [6]. The
conservation law for a dust Universe in the scale invariant context imposes a relation
of the form [23]: %R3λ = const. This means that the inertial mass of a particle or
of an object is not necessarily a constant, a situation which also occurs in GR and
Special Relativity where the inertial mass of an object depends on its velocity. Within
SIV the mass is evolving like t in the same way as the length, so that, interestingly
enough, the gravitational potential Φ = GtM(t)/R(t) of an object is a scale-invariant
quantity. We call M(t) the mass that varies like M(t) ∼ (1/λ) ∼ t, where t is the
cosmic time. In a Universe model with Ωm = 0.3, a mass M(t0) at the present

time was at time tin = Ω
1/3
m , M(tin) = (tin/t0)M(t0) = Ω

1/3
m M(t0) = 0.6694 M(t0)

at the Big-Bang. Over small and moderate time intervals, the mass may often be
considered as a constant.

With respect to the classical expression, there is an additional acceleration term in
the direction of motion. This term proportional to the velocity is favoring collapse
in an accretion system and favoring expansion in a two-body system. From here
onwards, we call Gt the gravitational constant (a true constant), expressed in the
appropriate units t in the above cosmological models, while G wil now on be reserved
to the value expressed in the current time units (years, seconds).

Equation (22) contains terms and derivatives which are functions of the univer-
sal λ(t), the range of which is squeezed by the limited range of the adopted t-scale
in the cosmological models. As Ωm increases, a given range ∆τ in the current time
units (e.g. 2 Gyr) is expressed in terms of the corresponding smaller ∆t interval. We
need to convert the equation of motion (22) expressed with variable t into terms of
the cosmic time τ in the current units (years, seconds) with an origin at τ = 0 and
a present value τ0 = 13.8 Gyr. Equation (22) becomes,

d2r

dτ 2

(
dτ

dt

)2

= −GtM(t)

r2

r

r
+

1

tin + τ
τ0

(t0 − tin)

dτ

dt

dr

dτ
. (23)

The corresponding units of G in the usual τ -scale are [cm3 · g−1s−2]. Thus, we have

the correspondence Gt

(
dt
dτ

)2
= G with the usual units conversion. At the present

epoch t0 or τ0 in the current units, the masses M(t0) and M(τ0) are evidently equal.
At other epochs, the relation is,

M(t) =
t

t0
M(t0) , thus M(τ) = [Ω1/3

m +
τ

τ0

(1− Ω1/3
m )]M(τ0) . (24)

This results in the correct scaling of expected mass at the Big Bang M(tin) =

Ω
1/3
m M(t0) to be compared with M(τin = 0) = Ω

1/3
m M(τ0); therefore, M(tin) =

M(τin = 0).

Thus, multiplying both members of Eq. (23) by
(
dt
dτ

)2
, we get at time τ/τ0,

d2r

dτ 2
= −GM(τ)

r2

r

r
+

1

tin + τ
τ0

(t0 − tin)

t0 − tin
τ0

dr

dτ
. (25)
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We see that the presence of matter (tin > 0) always reduces the effect of the additional
acceleration term, for Ωm = 1⇒ tin = 1 = t0 it disappears. Now, let us consider the
situation at the present time τ0. We define the numerical factor ψ = ψ(τ0) using:

ψ(τ) =
t0 − tin

tin + τ
τ0

(t0 − tin)
⇒ ψ0 = ψ(τ0) = 1− Ω1/3

m . (26)

The modified Newton’s equation at present time τ0, currently 13.8 Gyr, is then:

d2r

dτ 2
= −GM(τ0)

r2

r

r
+
ψ0

τ0

dr

dτ
. (27)

The small additional term depends on the global cosmology, in particular on pa-
rameter Ωm, as discussed above. In an empty Universe, ψ0 = 1. For Ωm → 1, one
has ψ0 → 0. For higher Ωm values, consistently with the discussion of the Eq. (12)
the additional term would be absent [30]. In the case with Ωm = 0.30, one has
ψ0 = 0.331. Thus, the additional acceleration term is significantly reduced.

4.2. The two-body problem with λ-limitations

Let us now consider a two-body system within the SIV theory with k = 0 and
a density parameter Ωm. From Eq. (22) in the t-scale, the orbital motion was found
to be still described by the Binet equation (the mass change being accounted for)
and thus obeying the equation of conics [24] and [26]

r(ϑ) =
p

1 + e cosϑ
. (28)

The parameter p is related to the semi-major axis a, semi-minor axis b, and eccen-
tricity e via the relationships:

p =
b2

a
, b = a

√
1− e2 , thus p = a(1− e2) . (29)

The eccentricity e is a scale-invariant quantity. For e = 0, one has a circular orbit
with a radius r = p. There is a small growth of the parameter p, or r for e = 0 as
we consider here, first in the time t-scale,

ṙ

r
= (− λ̇

λ
) = 1/t implying r ∼ t , and

∆r

r
=

∆t

t
. (30)

Thus, the orbital motion of a bound system is described by a circle (or an ellipse)
with a slight superposed outwards spiraling motion. Quite interestingly, the small
cosmological expansion keeps the orbital velocity constant. This reminiscent of the
behaviour in MOND, where the speed on an orbit becomes asymptotically indepen-
dent of the size of the orbit [35].

The above expressions formally only apply within an empty Universe with Ωm = 0.
The limitations of the range of t- and λ-variations given by Eqs. (20) are not yet in-
cluded. Clearly, we have to account for them in a Universe with a density parameter
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different from zero. Thus, with Eqs. (20) and (21) we may write the relative change
of the orbital radius (or parameter p),

dr

r
=

dt

t
=

dt

dτ

dτ

t
=

(t0 − tin)

τ0

dτ

(tin + τ
τ0

(t0 − tin))
= ψ(τ)

dτ

τ0

. (31)

This applies at a time τ . Let us consider, at the present epoch τ0, where the orbital
radius is r0, an interval of time ∆τ (say one year) very small with respect to τ0 =
13.8 Gyr. We may thus write the relative change of the orbital distance ∆r/∆τ
during this small interval of time,

∆r

∆τ
= ψ0

r0

τ0

. (32)

For Ωm = 0, we would get ψ0 = 1 and thus ∆r/∆τ = r0/τ0. In a Universe model
with a density parameter Ωm > 0, the temporal increase of the orbital parameter is
smaller than that in an empty universe (ψ0 = 1 − Ω

1/3
m < 1). For Ωm tending to 1,

the relative orbital increase tends to zero. For Ωm = 0.2, 0.3, 0.4, the factor ψ0 is
equal to 0.4152, 0.3306, 0.2632, respectively. Below, we will consider the standard
model with Ωm = 0.30. On the whole, the account of matter strongly reduces the
expected effects of scale invariance.

5. Study of the Earth-Moon system

5.1. The LLR data

Let us turn to the observations. Since March 1970, the Earth-Moon distance has
been intensively measured by Lunar Laser Ranging (LLR), first at Mc Donald Ob-
servatory and since the 80’s at several other observatories around the world. A total
of 20 138 ranges up to September 2015 have been performed leading to an average lu-
nar recession of 3.83 (±0.009) cm/yr [43, 44]. We note the impressive accuracy. The
value of the lunar recession has not much changed since the first determination more
than three decades ago [8], which illustrates the quality of the measurements. The
Earth-Moon distance is the most intensively and systematically measured distance
in the Solar System and the only one by a direct laser signal.

The main effect producing this recession is the Earth-Moon tidal coupling: the
tidal bump of the Earth embarked by the fast Earth axial rotation, with an angular
velocity faster than that of the Moon on its orbits, generates a forward pull on the
Moon. This pull is transferring some axial terrestrial angular momentum to the
lunar orbital one. Over geological times, the lunar recession has likely changed since
the Moon was closer to the Earth and thus the tidal exchanges were larger. For
example, a lunar recession of about 6.5 cm/yr was estimated for the Ediacaran –
Early Cambrian period (about 600 Myr ago) by [1].
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5.2. The LOD data

According to the theoretical modeling of the tidal waves, lunar motion, and terres-
trial rotation by [43], the observed lunar recession of 3.83 cm/yr implies an increase
of the length of the day (LOD) of 2.395 ms/cy (millisecond per century). The LOD
is defined as the excess of the length of the day with respect to 86 400 SI seconds. We
note that the value of 2.395 ms/yr for the change of the LOD over centuries is consis-
tent with the calculation of the tidal coupling under the assumption of conservation
of the global angular momentum of the Earth-Moon system [14], [31]. This theoret-
ical value of the increase of the LOD has also been very well confirmed recently by
[2]. These authors revisited the Earth rotation theories with a two-layer deformable
Earth model, including dissipative effects at the core-mantle boundary and account
of the coupling torque between the two. The deceleration is numerically estimated
with frequency-dependent modeling of the various solid and oceanic tides. In the
assumption of the long-term coupling of the core and mantle, they obtain a deceler-
ation of the Earth rotation corresponding to an increase of the LOD of 2.418 ms/cy
in very good agreement with the above modeling by [43].

The best and longest studies on the change of the LOD in History have been
performed by Stephenson et al. [40], who analyzed the lunar and solar eclipses from
720 BC up to 1600 AD and found an average shift of the LOD by 1.78 (±0.03) ms/cy.
Such a shift, apparently very small, is acting every day and progressively produces
large effects over a long period. When cumulated over 2000 yr, differences in the time
of solar and lunar eclipses are amounting to about 18 000 s. Such time differences are
leading to big shifts in the eclipse locations, up to thousands of km. The constraints
on the eclipse locations and indications (when available) about the time of the eclipse
allowed Stephenson et al. to make the above determination, which had only slightly
changed in their successive papers since 1984, see references in [40]. These authors
also suggested the existence of a slight undulation around the mean with a period
of 1500 yr, possibly related to the effect of magnetic core-envelope coupling [13].

Various other effects may contribute to the LOD, with different timescales: atmo-
spheric effects, ice melting and change of the sea level, glacial isostatic adjustment,
and core-envelope coupling. The most uncertain contribution is that of the core
coupling which seems responsible for the 1500 yr undulation. Over the long term,
the various negative and positive effects appear to balance each other before the
year 1990, see data by [36], [37] and our recent detailed review of the problem [31],
(since 1990, the fast melting of even the polar ice fields contribute to an increase of
the Earth momentum of inertia). The reality of the difference between the above ob-
served mean value of the LOD (1.78 ms/cy) and the value due to the tidal interaction
(2.395 ms/cy) has recently been further emphasized by [41].

We note that other estimates of the change of the LOD have been made from lunar
occultations, however on a shorter time basis. The observations of lunar occultations
from 1656 to 1986 have been analyzed by [32], they indicate a slowing down of
the Earth of 0.73 (±0.018) ms/cy. The data show some decadal variations around
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the mean, which were also present in the further analyses. Various astronomical
telescopic observations over the last 350 yr were analyzed by [39], which led to
a mean increase of the LOD of 0.9 ms/cy. A new determination of the change of
the LOD based on the data from [40] for occultations since 1680 complemented by
IERS data for the period 1970 to 2020 has been performed recently by us [31]. We
showed an average increase of 1.09 (±0.012) ms/cy for the LOD over that period.
All these determinations based on relatively limited durations are more subject to
decadal fluctuations than the ancient eclipse observations.

Interestingly enough, another independent very long-term determination of the
deceleration of the Earth rotation has been established on the basis of paleontological
studies by Deines and Williams [10]. These authors examined all available paleonto-
logical fossils and deposits for direct measurements of Earth’s rotation, in particular
they used corals, bivalves, brachipods, rythmites, and stromatolites. These fossils
are keeping the traces of phases of daily growth due to the alternance of days and
nights. The oldest records go back to 1.85 Gyr ago, however such very ancient
data are highly uncertain. Much more reliable data are availablle since the Cam-
brian explosion of the forms of life, when animals with hard shells first appeared,
about 542 Myr ago. From their whole sample, [10] found a clear decrease of the
number of days in one year. For example, 400 Myr ago, an epoch where there are
lots of data, the mean number of days in one year (considered of constant duration,
but see below) was about 405 days (with an uncertainty σ of about ± 7 days). From
their sample of collected data, Deines and Williams found a mean deceleration cor-
responding to a change of the LOD 1.642 (± 0.48) ms/cy. This mean value is quite
interesting, although not taken at present time it concerns an age differing by less 3%
of the present age of the Universe. The error is larger than the one by Stephenson
et al. [40] (1.78 ± 0.03 ms/cy). Nevertheless, it gives another value consistent with
and independent of the value by Stephenson et al. [40]. Based on an incredibly much
longer time period, the result by Deines and Williams is supporting the discrepancy
between the change of the LOD and the value of the lunar recession.

5.3. Theoretical predictions of the two-body problem

Let us consider the possible increase of the Earth-Moon distance during one year
in the scale-invariant context. For an empty Universe with an age of τ0 = 13.8 Gyr
and a mean Earth-Moon distance of r0 = 384 400 km, the lunar recession would be(

∆r

∆τ

)
vac

=
r0

τ0

= 2.78 cm · yr−1 . (33)

This is close to the Hubble-Lemâıtre expansion rate with H0 = 70 km/(s Mpc),
corresponding to a lunar recession of 2.75 cm · yr−1. For a Universe with Ωm = 0.30,
ψ0 = 0.3306 and the predicted cosmological expansion of the Earth-Moon system is,(

∆r

∆τ

)
cosm

= 0.92 cm · yr−1 , (34)

a value substantially smaller than the Hubble-Lemâıtre expansion.

21



Let us also shortly consider the Earth-Mars distance. The relevant parameters
are:

Mars : a = 227944000 km, e = 0.09339, p = 225.956 · 106 km.
Earth: a = 149598000 km, e = 0.01671, p = 149.556 · 106 km.

The difference of parameters p for Mars and the Earth is d = pMars − pEarth =
76.4 · 106 km. The estimate of the Mars-Earth recession based on this distance d
would be in an empty Universe,

(
∆d
∆τ

)
vac

= d
τ0

= 5.54 m · yr−1. With the factor
ψ = 0.3306 for Ωm = 0.30, we get(

∆d

∆τ

)
cosm

= 1.83 m · yr−1 . (35)

5.4. The tidal interaction in the scale invariant context

Let us also examine the tidal interaction in the Earth-Moon system. The law
of angular momentum conservation for a given mass element in the scale invariant
framework [26], is κ(t) r2 Ω = const, while both r and M , are scaling like t, e.g.M =
M0(t/t0). Let us examine the conservation of the total angular momentum of the
Earth (E)–Moon (M) system at time t [14],

ζ cosϕ IEΩE +MMR
2ΩM = L , with L = L0

t2

t20
(36)

The angle ϕ is the variable angle between the lunar orbital plane and the Earth
equator. The numerical factor ζ accounts for the consequences of the eccentric-
ity e = 0.055 of the lunar orbit, see numerical value below. Quantities IE and
ΩE = 2π/TE are respectively the moment of inertia and the axial angular velocity
of the Earth, MM is the mass of the Moon and ΩM its orbital angular velocity, R is
the mean distance between the Earth and Moon, L0 is the total angular momentum
at the present time t0. We neglect the axial angular momentum of the Moon, since
its mass is 1.2 % of that of the Earth and its axial rotation period (equal to its
orbital period) is 27.3 days. Thus, the lunar axial angular momentum is a fraction
of about 4 · 10−4 of that of the Earth.

Let us evaluate the time derivative of the above expression (36),

−ζ cosϕ
2π

T 2
E

IE
dTE

dt
+ ζ cosϕ

2π

TE

dIE

dt
+
d

dt
(MMR

2ΩM)

=2
(
ζ cosϕ IEΩE +MMR

2ΩM

)
0

t

t20
. (37)

Account has been given to the change of the moment of inertia due to the mass
variation. Here TE is the axial rotation period of the Earth. For ΩM, we have
the relation Ω2

M = GMER
−3, which also applies in the SIV context, there ME is the
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Earth’s mass. We can develop the third term on the left of the above expression (37),

d

dt
(MMR

2ΩM) =
d

dt
(G

1
2M

1
2

ER
1
2MM) = G

1
2M

1
2

EMM
d

dt
(R

1
2 ) +G

1
2R

1
2
d

dt
(M

1
2

EMM)

=G
1
2M

1
2

EMMR
− 1

2
1

2

dR

dt
+

3

2
G

1
2M

1
2

EMMR
1
2

1

t
. (38)

Indeed, dM/dt = M/t as well as M0/t0. Introducing this expression in Eq. (37) and
explicating the time dependence of the various terms leads to

ζ cosϕ

(
2 π

TE

dIE

dt
− 2 πIE

T 2
E

dTE

dt

)
+
G

1
2M

1
2

E MM

2R
1
2

dR

dt
+

3

2
G

1
2M

1
2

E MM R
1
2

1

t

=ζ cosϕ IE
4 π

TE

t

t20
+ 2G

1
2M

1
2

E MM R
1
2
t

t20
. (39)

From this relation, we now extract the lunar recession dR/dt, which becomes after
some simplifications,

dR

dt
=

4 πζ cosϕR
1
2 IE

G
1
2 M

1
2

E MM T 2
E

dTE

dt
+

4 πζ cosϕR
1
2 IE

G
1
2M

1
2

E MM TE

(
2t

t20
− 1

IE

dIE

dt

)
+R

(
4t

t20
− 3

t

)
. (40)

We may write it in a more condensed form by defining a constant kE,

kE = 4 π

(
ζ cosϕ

R1/2 IE

T 2
E G

1/2MM M
1/2
E

)
. (41)

By using dIE/dt = 3 IE/t (since IE is scaling like IE = I0(t3/t30) Eq. (40) can now be
written as:

dR

dt
= kE

dTE

dt
+ kETE

(
2 t

t20
− 3 t2

t30

)
+R

(
4t

t20
− 3

t

)
. (42)

For a time t differing very little from t0, e.g. by one year, one has t0
t
→ 1, and thus

with a high accuracy we write,

dR

dt
= kE

dTE

dt
− kE

TE

t0
+
R

t0
. (43)

The first term on the right represents the tidal effect linking the change of the
LOD and the lunar recession, the second term results from the increase of the moment
of inertia of the Earth (which reduces the lunar recession), the third term expresses
the global expansion of the system. Interestingly enough, this third term is just the
same as that predicted by the study of to the two-body problem, which shows the
internal consistency of both approaches. We note that the change of the mass of the
Moon is also contained in this third term, it was intervening through the last term
in Eq. (40).
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We have now to bring the above equation in the current time units, seconds and
years. With Eqs. (20) and (21), we get

dR

dτ
= kE

dTE

dτ
− kE ψ0

TE

τ0

+ ψ0
R

τ0

. (44)

In a cosmological Universe model with Ωm = 0.30, the ratio ψ0 = (t0−tin)
t0

= 0.331.

The constant kE is here in the units of t−1, while TE is in the units of t. Thus, both
have to be turned τ -units and the scaling factors simplify. Thus, kE and TE can
finally be both expressed in current time units (seconds or years).

5.5. Numerical values and discussion

We adopt the following numerical values of the various astronomical quantities

ME = 5.973 · 1027g, RE = 6.371 · 108cm,

MM = 7.342 · 1025g, R = 3.844 · 1010cm,

IE = 0.331 ·MER
2
E = 8.0184 · 1044g · cm2. (45)

The value 0.331 is obtained from precession data [42]. Coefficient kE = 1.806 · 105 ·
ζ cosϕ cm · s−1. The angle ϕ varies between 18.16 and 28.72 degrees, thus we adopt
a mean value of cosϕ = 0.91. We have to estimate the value of ζ. The tidal effects
behave like 1/r3, thus they depend on the eccentricity like (1 + e cosϑ)3. The time
spent in an interval of angles ∆ϑ goes like r2∆ϑ, thus like (1 + e cosϑ)−2. The
product of the two leads to a dependence of the form (1 + e cosϑ). For cosϑ, let
us take a value of −0.5 which leads to ζ = 1− 0.03 ≈ 0.97. We thus obtain for the
coefficient kE = 1.60 · 105 cm · s−1.

Let us evaluate numerically the various contributions. With the LOD of 1.78 ms/cy
from the antique data by [40], the first term contributes to a lunar recession of
2.85 cm/yr, while the LOD of 1.09 ms/cy from 1680 to the present [31] leads to a
recession of 1.74 cm/yr. The second term in Eq. (44) gives for the case of Ωm = 0.3,

0.33 · kE
TE

τ0

= 0.33 · 1.60 · 105 cm · s−1 86400 s

13.8 · 109 yr
= 0.33

[
cm

yr

]
. (46)

The direct expansion effect R
t0

is

0.33 · R
τ0

= 0.33 · 3.844 · 1010 cm

13.8 · 109 yr
= 0.92

[
cm

yr

]
. (47)

This term corresponds to a third of the general Hubble-Lemâıtre expansion. Sum-
ming the various contributions, we get

dR

dτ
= (2.85− 0.33 + 0.92) cm/yr = 3.44 cm/yr, from historical data [40] . (48)
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Thus, we see that the scale invariant analysis is giving a relatively good agreement
with the lunar recession of 3.83 cm/yr obtained from LLR observations. The dif-
ference amounts only to 10 % of the observed lunar recession. This is clearly much
better than in the standard case, where the predicted LOD of 2.395 ms/cy corre-
sponding to the observed recession diverges from the observed one of 1.78 ms/cy
by 35 %. Thus, the scale invariant analysis appears to give more consistent results
that the standard case. We do not consider this as a proof of the scale invariant
theory, but this shows that the SIV theory deserves some attention, especially since
more than several other astrophysical tests (see introduction) are successful.

We point out that the discrepancy between the observed LOD from historical
records and the observed lunar recession has already been mentioned by several
authors. Munk [38] has emphasized the interest of the discrepancy between the LLR
lunar recession and the LOD data, invoking climatic effects. However, this would not
be consistent with the data by Deines and Williams [10] which cover a much longer
period of time over the geological epochs. Dumin [14] has also clearly demonstrated
the above discrepancy between the LLR and the LOD results, showing that there
was an excess of lunar recession of about 1.3 cm/yr not accounted by the slowing
down of the Earth, an excess which would correspond to a fraction of about the half
of the Hubble expansion. Dumin further studied this discrepancy and discussed some
possible origins of it [15]. Krizek and Somer [22] have supported a local expansion
of at least the order of the half of Hubble rate from an analysis of various properties
in the Solar System. Also, the reality of the discrepancy between the observed LOD
and the lunar recession was emphasized by Stephenson et al. [41].

On one side, we may of course wonder whether this small effect of about 1.3 cm/yr
is sufficient to claim for an additional symmetry property in Physics. On the other
side, steps forward often come by scrutinizing minute differences. Also, a larger effect
would have already been found by more people than the few above precursors.

6. Conclusions

We have studied several mechanical properties in the scale invariant context, in
particular we have shown the large reduction of the additional dynamical effects
with the matter density. We have considered the two-body problem and the tidal
interaction in the Earth-Moon system. As examples in the two-body system, inde-
pendently of tidal effects, there would be a cosmological increase of 0.92 cm/yr for
the Earth-Moon distance.

The observed lunar recession from LLR data amounts to 3.83 (±0.009) cm/yr and
the corresponding theoretical tidal change of the LOD is 2.395 ms/cy, [43], [44]. Now,
the observed change of the LOD since the Babylonian Antiquity is only 1.78 ms/cy,
leading to a significant difference of 35 %, see [41]. Moreover, the value of 1.78 ms/cy
is supported by the data from paleontology over hundreds million years. Such
a change of the LOD would correspond to a lunar recession of 2.85 cm/yr, instead
of 3.83 cm/yr as observed. The difference in the lunar recession is well accounted for
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within the dynamics of the SIV theory (48). A minima, the above results shows that
the problem of scale invariance is worth of some attention.
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8. APPENDIX: A note on the result of Banik and Kroupa

A criticism of the scale invariant theory was expressed by Banik and Kroupa [3]
with the argument that “the predicted expansion of the Earth–Moon orbit is incom-
patible with lunar laser ranging data at > 200σ”. They used the following expression
for the change of the lunar angular velocity,

Ω̇

Ω
= − ṙSIV + (3/2)ṙTide

r
. (49)

The correct expression in the scale invariant theory (SIV) is according to the un-
modified expression of the orbital velocity v2 = GME/r, and thus via Ω2 = GMEr

−3

one has:

Ω̇

Ω
=

1

2

ṀE

ME

− 3

2

ṙ

r
. (50)

Now, ṙ is given by Eq. (44), where the first term on the right of this equation corre-
sponds to ṙTide in (49),

Ω̇

Ω
=

1

2

ṀE

ME

− 3

2

ṙTide

r
+

3

2 r
kE ψ

TE

τ0

− 3

2
ψ

1

τ0

. (51)

The first and last terms on the right simplify, we get

Ω̇

Ω
= −ψ 1

τ0

− 3

2

ṙTide

r
+

3

2 r
kE ψ

TE

τ0

. (52)

The first two terms are identical with those of Banik and Kroupa, however the last
term, which is an important one, is absent in their equation. This clearly invalidate
their claim. On the contrary, the results of the present work confirm the remarkable
compatibility of the scale invariant theory with the observed lunar recession, an
agreement which does not exist in the standard theory.

26



References

[1] Azarevich, M. B., Lopez, V. L.: Lunar recession encoded in tidal rhythmites:
a selective overview with examples from Argentina. Geo-Marine Letters. 37
(2017), 333–344.

[2] Baenas, T., Escapa, A., Ferrandiz, J. M.: Secular changes in length of day:
Effect of the mass redistribution. Astron. Astrophys. 648 (2021), 89–98.

[3] Banik, I., Kroupa, P.: Scale invariant dynamics in the Solar system. MNRAS,
407 (2020), L62–66.

[4] Bondi, H.: The cosmological scene 1945-1952. Modern Cosmology in Retrospect
(1990) Bertotti, B., Balbinot, R., Bergia, S., eds., Cambridge Univ. Press., 189.

[5] Bonnor, W. B.: Local dynamics and the expansion of the Universe. Gen. Rel.
Grav. 32 (2000) 1005.

[6] Bouvier, P., Maeder, A.: Consistency of Weyl’s geometry as a framework for
gravitation. Astroph. Space Sci. 54 (1978), 497–508.

[7] Canuto, V., Adams, P. J., Hsieh, S. -H., Tsiang, E.: Scale-covariant theory of
gravitation and astrophysical applications. Phys. Rev.D. 16 (1977), 1643–1663.

[8] Christodoulidis, D. C., Smith, D. E., Williamson, R. G. et al.: Observed tidal
braking in the Earth/moon/sun system. J. Geophys. Res. 93(B6) (1988), 6216–
6236.

[9] Carroll, S. M., Press, W. H., Turner, E. L.: The cosmological constant. Ann.
Rev. Astron. Astrophys. 30, 499–542.

[10] Deines, S. D., Williams, C. A.: Earth’s rotational deceleration: determination
of tidal friction independent of timescales. Astron. J. 151 (2016). 103–114.

[11] Dirac, P. A. M.: Long range forces and broken symmetries. Proc. Roy. Soc.
London Ser. A, 333 (1973), 403–418.

[12] Dirac, P. A. M.: Cosmological models and the large numbers hypothesis. Proc.
Roy. Soc. London Ser. A, 338 (1974), 439–446.

[13] Dumberry, M., Bloxham, J.: Azimuthal flows in the Earth’s core and changes
in length of day at millennial timescales. Geophys. J. 165 (2006), 32–46.

[14] Dumin, Yu. V.: A new application of the lunar laser retroreflectors: Searching
for the “local” hubble expansion. Adv. Space Res. 31 (2003), 2461–2466.

[15] Dumin, Yu. V.: Local Hubble expansion: current state of the problem. In Cos-
mology on Small Scales (2016), eds. M. Kř́ıžek and Y. Dumin, Institute of Math.
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Abstract: The current paradigm of astronomy and cosmology denies the
expansion of gravitationally bound local systems. The increase of the Earth to
Moon distance, 3.82 cm/yr measured in the Lunar Laser Ranging program [1]
for the last 50 years is explained as a tidal effect. If local systems expanded
at a rate corresponding to Hubble constant 71 (km/s)/Mpc, 2.8 cm/yr of the
increase resulted from the expansion and only about 1 cm/yr from the tidal
interaction. An independent method to measure the retreat value is based on
the ancient tidal sediment layers which give the development of the number of
months in a year. The most accurate of those are the studies by [2], [3]. Based
on the unchanged length of a year, he has obtained the average retreat value
of 2.1 ± 0.1 cm/yr over 635 Myr, which is less than the value expected from
expansion. The conclusion from the result has been that there cannot be any
Hubble expansion and the current high retreat value is caused by a special
ocean resonance. When the retreat from tidal sediment data is recalculated
by assuming expansion of local systems and observing that the expansion is
associated with a change in the length of a year, a perfect agreement between
the Laser Ranging result and the sediment layer result is obtained.

Keywords: cosmology, celestial mechanics
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1. Introduction

It is known that the rotation of the Earth is slowing down with time. This was
shown convincingly as the development of the number of days in a year obtained
from coral fossils by [4] in 1963. The fossil data shows that the Earth’s rotation
rate has been slowing down smoothly for the last 800 million years without major
changes or jumps. In the Earth-Moon system, the slowing rotation of the Earth
is associated with an increasing angular momentum of the Moon resulting in the
increasing orbital radius of the Moon. Because Earth’s rotation is slowing down
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almost linearly at present, it means that the retreat of the Moon must be also linear.
In the current theoretical framework, there is a major conflict between the laser-
measured retreat value and the value obtained from tidal sediment layers. In the
framework of the Dynamic Universe (DU) theory by T. Suntola [5] all gravitationally
bound local systems expand in direct proportion to the expansion of space which
means that also the length of a year increases with the expansion. When solved in
the DU framework, a coherent result is obtained from the coral fossil data, sediment
layer data, and the Laser Ranging data.

2. Calculation of the Moon retreat value based on the current paradigm
with non-expanding local systems and the associated constant length
of a year

In Southern, Australia there is a well-preserved 635 Ma old tidal layer formation.
G.E. Williams studied drilling cores from this formation and found a continuous
60-year footprint of lunar cycles. Typically, similar deposits contain a few months of
continuous layers maximum. The current average distance to Moon is 384 400 km
and the length of the sidereal month (rotation time of the Moon with relative to the
fixed stars) is 27.3 days corresponding to 13.38 sideral months in a year.

The sediment layers are caused by tides. The observed number of months in
a year in the 635-million-year-old samples is 14.1 ± 0.1, corresponding to the sidereal
month of 25.9 current days in a year when assuming that the length of a year has been
unchanged. This means that the sidereal month 635 million years ago was 0.944 times
the present sidereal month. Based on Kepler’s laws the orbital radius of the Moon
corresponding to orbital period 635 Myr ago was 371 143 km which is 13 257 km less
that the current orbital radius. This gives the average change of 2.1 cm/yr, which is
substantially less than today’s measured value of 3.82 cm/yr.

The number of months per year is theory-free; it is obtained from direct counting
from layers. The interpretation of the result is theory dependent. It is that the
length of the year does not change i.e. the Solar system does not expand. By using
a theory that follows the current paradigm, we cannot find the reason for the conflict
in the results between laser distance measurement and results from sediment layers.

3. Calculation based on Suntola’s Dynamic Universe theory

DU theory is based on the balance of the gravitational and kinetic energy in
spherically closed space. Space expands uniformly including gravitationally bound
local systems. Applying the Hubble constant 71 (km/s)/Mpc the length of a year
635 million years ago was 349 current days, and the length of a month was 349/14.1
= 24.8 current days. The current length of a sidereal month is 27.39 days and the
mean distance of the Moon is 384 400 km. Applying Keppler’s law, the distance to
the moon 635 Myr ago was 359 575 km, which means that the distance has increased
by 24 825 km in 635 million years corresponding to the average annual change of
3.91±0.2 cm. It should be noted that in this calculation we had no need to separate
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the tidal component and the cosmic expansion on the retreat of the Moon. In the
DU framework, the expansion of space corresponding to Hubble constant Hubble
constant 71 (km/s)/Mpc gives a 2.8 cm annual retreat, which leaves about 1 cm an-
nual retreat to the tidal interactions in a good agreement with both the sediment
results and the Lunar Laser results.

When assuming the tidal effect only, the high rate of the Moon’s retreat has
created a problem with the age of the Moon. We do not have reliable tidal data
from the deeper in history. When incorporating the cosmic expansion, the tidal
component today is about 26% of the total retreat value which presumably is low
enough to solve the age problem.

4. Conclusions

This study gives strong support to the expansion of the Solar system in direct
proportion to cosmic expansion. This study gives also a fully independent method
to determine the Hubble constant. Calculations here indicate the accuracy of 71 ±
2 km/s/Mpc, see [6]. Future more thorough statistical analysis may give an even
more strict error limit for the Hubble constant.
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Abstract: The aim of this analysis of a historical compilation of Hubble–
Lemâıtre constant (H0) values in the standard cosmological model is to de-
termine whether or not the stated error bars truly represent the dispersion of
values given. For this analysis, a chi-squared test was executed on a compiled
list of past measurements. It was found through statistical analyses of the
data (163 data points measured between 1976 and 2019), that the χ2 values
(between 480.1 and 575.7) have an associated probability that is very low:
Q = 1.8 × 10−33 for a linear fit of the data vs. epoch of measurement and
Q = 1.0× 10−47 for the weighted average of the data. This means that either
the statistical error bars associated with the observed parameter measure-
ments have been underestimated or the systematic errors were not properly
taken into account in at least 15–20% of the measurements.
The fact that the underestimation of error bars for H0 is so common might
explain the apparent 4.4σ discrepancy formally known today as the Hubble
tension. Here we have carried out a recalibration of the probabilities with the
present sample of measurements and we find that xσs deviation is indeed equiv-
alent in a normal distribution to the xeq.σs deviation, where xeq. = 0.83x0.62.
Hence, the tension of 4.4σ, estimated between the local Cepheid–supernova dis-
tance ladder and cosmic microwave background (CMB) data, is indeed a 2.1σ
tension in equivalent terms of a normal distribution, with an associated prob-
ability P (> xeq.) = 0.036 (1 in 28). This can be increased to an equivalent
tension of 2.5σ in the worst cases of claimed 6σ tension, which may in any
case happen as a random statistical fluctuation.
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1. Introduction

The Hubble–Lemâıtre constant, H0, is one of the fundamental cosmological pa-
rameters. We know its approximate value, but there is not yet any widely accepted
accurate estimate of the parameter.

From the beginning of the discovery of the apparent magnitude relation of the
galaxies in the 1920s, first by Lemâıtre and later by Hubble (the so-called Hubble–
Lemâıtre diagram), H0 has decreased in value by almost an order of magnitude.
In the 1980s, two preferred values were defended by different teams: either 50 or
100 km s−1 Mpc−1. Later, in the 1990s and 2000s, a value of around 70 km s−1 Mpc−1

became dominant, with preference for the value of 72 km s−1 Mpc−1 obtained by
the Hubble Space Telescope (HST) Key Project using supernovae [1]. Nonetheless,
discordant values were later published. A period–luminosity bias for the calibration
of distances with nearby galaxies would justify a reduction of the Hubble–Lemâıtre
constant to values of around 60 km s−1 Mpc−1, see [2], [3]. Even supernova data
with HST were fitted with these values. As to the possible (non-)universality of
the Cepheid period–luminosity relation, it was argued that low metallicity Cepheids
have flatter slopes, and that the derived distance would depend on what relation is
used [4].

We must also bear in mind that the value of H0 is determined without know-
ing on what scales the radial motion of galaxies and clusters of galaxies relative
to us is completely dominated by the Hubble–Lemâıtre flow [5]. The homogeneity
scale may be much larger than expected [6], [7], thus giving important net velocity
flows on large scales that are incorrectly attributed to cosmological redshifts. Hence,
some differences in H0 measured on different scales might be due to this neglect of
net radial motions of galaxies. Also, values of H0-derived cosmic microwave back-
ground (CMB) analyses are subject to the errors in the cosmological interpretation
of this radiation [8].

Yet another controversy arose more recently on the value of H0. The Hubble–
Lemâıtre constant estimated from the local Cepheid–supernova distance ladder is
at odds with the value extrapolated from CMB data, assuming the standard cos-
mological model (74.0± 1.4 and 67.4± 0.4 s−1 Mpc−1, respectively), which gives an
incompatibility at the 4.4σ level [9]. This tension can even be increased up to 6σ
depending on the datasets considered [10]. Given the number of systematic errors
that may arise in the measurements, this should not be surprising. However, this
problem has motivated hundreds of papers since 2019: many solutions to the prob-
lem have been proposed (review in Refs. [10], [11]), either discussing the method to
estimate H0 or new theoretical scenarios.

Here we will not contribute with a new solution to this Hubble tension in physical
terms. Instead we will carry out a historical investigation to determine whether or
not the given error bars truly represented the dispersion of values in a historical
compilation of H0 values between 1976 and 2019. We also show how we can use this
knowledge to recalibrate the probabilities of some tension of this kind.
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2. Bibliographical data

We compile 163 values for H0 between the years of 1976 and 2019. In addition
to the values themselves, we were interested in a few other details about the mea-
surements, namely, the years in which those measurements were made and the sizes
of the error bars corresponding to the observed values. The list of observed values
can be found in Ref. [12], where 120 measurements between 1990 and 2010 were
taken from the compilation by Ref. [13]1, plus other 8 measurements between 1976
and 1989 and 35 measurements between 2011 and 2019. The latest measurement we
use is the value given by Ref. [9], which marked the origin of the present-day Hubble
tension.

3. Statistical analysis

For the statistical analysis of this data, a simplifying assumption was made that
each observed measurement is independent of the other observed measurements, thus
eliminating the need for a covariance term. It should also be noted that the given
error bars account for all statistical effects. In order to analyse the trends in our
datasets when viewed in scatter plots (see Figure 1), we used a chi-squared test to
examine the probabilities of the deviations and determine whether the simplifying
assumption made that the measurements were independent of one another was cor-
rect.

The chi-squared value of a set of data gives the likelihood that the trend observed
in the data occurred due to chance, and is also known as a ‘goodness of fit’ test [15].
The probability that a calculated χ2 value for a dataset with d degrees of freedom is
due to chance is represented by Q and is given by the following expression:

Qχ2,d =

[
2d/2Γ

(
d

2

)]−1 ∫ ∞
χ2

(t)
d
2
−1e

−t
2 dt, (1)

Γ(x) =

∫ ∞
0

tx−1e−tdt.

The covariance term is not included owing to the simplifying expression made that
all of the observed measurements are independent of one another. This independence
of data is precisely the hypothesis we want to test. In any case, non-independency
of our data would make the spread of the points lower than is indicated by the
error bars, making the probability Q of higher deviations even lower, and thus the
number of points to reject in order to have a distribution compatible to the error
bars even larger. Therefore, our simplified approach may be considered a conservative
calculation.

This calculation was carried out twice, first using the weighted average H0 values
as the theoretical values (xt), and then again using the best-fit values from a linear

1All of the data except the measurement of 93±1 km s−1 Mpc−1 by Ref. [14], which we excluded
for being > 20σ away from the average.
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Figure 1: Data of H0 vs. time (year - 2000) data, weighted average, and best linear
fit.

fit. Lines representing both the weighted average of the dataset (green) and the
best fit for the dataset (red) that were used to calculate chi-squared can be seen
with the data points in Figure 1. The weighted averages (λw) of the parameters in
question were calculated by weighting each point by the variance of that value. We
get λw ≈ 68.26± 0.40 km s−1 Mpc−1 and χ2 = 575.7.

Also, a linear fit of the form Y = A+ B ×X is used, where Y is the theoretical
value for the parameter being analyzed and X is the year of that measurement
minus 2000. We get a χ2 ≈ 480.1 for the linear fit:

H0 (km s−1 Mpc−1) = 65.3 + 0.26× [t(yr)− 2000], (2)

as can be seen in Figure 1, represented by the red line.
For the value of χ2 calculated using the best linear fit function designed to min-

imize χ2, Q = 1.8 × 10−33. In order to reach a statistically significant value for Q,
24 bad values must be removed (n = 139, χ2 ≈ 164.1), producing a value for Q
of 0.057. In order to determine which values should be removed as bad values,
all values were ranked based on their contributions to χ2 by increasing value of
[x− (best fit x)]/(error ofx) and then again by [x− (weighted average x)]/(error ofx),
where x is the observed value for the parameter in question. Values with the
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Figure 2: Data of H0 vs. time (year − 2000) separating the N = 139 good values
that make the χ2 linear fit compatible with the error bars, and the rest of the points
(N = 24) plotted as bad values. Here, we only use the good values for the weighted
average and best linear fit.

largest contribution to χ2 (bad values) were removed first. With this last subsample
of 139 points, the best linear fit of H0 returned an A value of 65.9±0.4 and a B value
of 0.277+0.032

−0.034; see Figure 2.
The correlation factor of H0 with time2 is c = 0.027 ± 0.013, a 2σ significant

correlation. Two sigma correlation is not a highly significant detection and is possibly
a statistical fluctuation. If a more significant correlation had been obtained, it would
have been proof that the measurements of the parameter are not independent, and
that there are systematic common errors that vary with time or social biases.3

2For two independent variables X and Y , the correlation factor is defined as c = 〈X Y 〉
〈X〉〈Y 〉 − 1,

with error Err(c) = σXσY√
N〈X〉〈Y 〉 . The Pearson correlation coefficient would be c√

NErr(c)
.

3Richard Feynman gives an example of Nobel Laureate Robert Millikan measuring the charge of
an electron: “it’s interesting to look at the history of measurements of the charge of the electron,
after Millikan. If you plot them as a function of time, you find that one is a little bigger than
Millikan’s, and the next one is a little bit bigger than that, and the next one’s a little bit bigger
than that, until finally they settle down to a number which is higher”[16]. Feynman goes on to
ask why the final higher number was not discovered right away, and comes to the conclusion, when
“[scientists] got a number that was too high above Millikan’s, they thought something must be
wrong and they would look for and find a reason why something might be wrong, leading them to
eliminate values that were too far off, and did other things like that”.
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We will neglect the variation with time of H0, and we will continue our analysis
with the weighted average. For the value of χ2 calculated using the weighted average,
the probability that the observed trend is due to chance is Q = 1.0× 10−47. In order
to reach a value for Q that is statistically significant (Q ≥ 0.05), 27 bad values (with
more than 2.8σ deviation from the average value) must be removed from the data
(n = 136, χ2 = 161.3), producing a value for Q of 0.061. These numbers are slightly
different from those given by Ref. [12] owing to a minor error correction. Table 1 [17]
lists the 27 values with more than 2.8σ deviation.

See Ref. [12] for further details of this analysis.

Table 1: Bad values: measurements of H0 in which |H0 −H0| > 2.8σ, where H0 =
68.26 km s−1 Mpc−1 is the weighted average of the 163 values of the literature.

Year H0 (km s−1 Mpc−1) |H0−H0|
σ

Reference
1976 50.3± 4.3 4.2 Sandage & Tammann; [18]
1984 45.0± 7.0 3.3 Jõeveer; [19]
1990 52.0± 2.0 8.1 Sandage & Tammann; [13]
1993 47.0± 5.0 4.3 Sandage & Tammann; [13]
1994 85.0± 5.0 3.3 Lu et al.; [13]
1996 84.0± 4.0 3.9 Ford et al.; [13]
1996 57.0± 4.0 2.8 Branch et al.; [13]
1996 56.0± 4.0 3.1 Sandage et al.; [13]
1998 65.0± 1.0 3.3 Watanahe et al.; [13]
1998 44.0± 4.0 6.1 Impey et al.; [13]
1999 60.0± 2.0 4.1 Saha et al.; [13]
1999 55.0± 3.0 4.4 Sandage; [13]
1999 54.0± 5.0 2.9 Bridle et al.; [13]
1999 42.0± 9.0 2.9 Collier et al.; [13]
2000 65.0± 1.0 3.3 Wang et al.; [13]
2000 52.0± 5.5 3.0 Burud et al.; [13]
2004 78.0± 3.0 3.2 Wucknitz et al.; [13]
2006 74.9± 2.3 3.0 Ngeow & Kanbur; [13]
2006 74.0± 2.0 2.9 Sánchez et al.; [13]
2008 61.7± 1.2 5.7 Leith et al.; [13]
2012 74.3± 2.1 2.9 Freedman et al.; [20]
2013 76.0± 1.9 4.1 Fiorentino et al.; [21]
2016 73.2± 1.7 2.9 Riess et al.; [22]
2018 73.5± 1.7 3.1 Riess et al.; [23]
2018 73.3± 1.7 3.0 Follin & Knox; [24]
2018 73.2± 1.7 2.9 Chen et al.; [25]
2019 74.0± 1.4 4.1 Riess et al.; [9]
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Figure 3: Probability of deviation larger than x sigmas, assuming H0,teor. =
68.26 km s−1 Mpc−1 (the weighted average value). The dotted line shows the best
exponential fit. In dashed line shows the expected probability if the errors are Gaus-
sian.

4. Recalibration of probabilities

In Figure 3, we plot the frequency of deviation larger than xσ from the weighted
average valueH0,teor. = 68.26 km s−1 Mpc−1 derived used the whole sample of 163 mea-
surements (including the bad ones) [17]. Clearly, the probabilities are much higher
than those expected in a normal Gaussian error distribution. For example, in a Gaus-
sian error distribution we should get a P = 2.7×10−3 of obtaining a deviation higher
than 3σ (where σ is the error of the measurement), but instead we observe that
11.7% of our measurements get deviations higher than 3σ. The fit of our probability
with the frequencies we obtain from the real measurements is:

P (|H0 −H0| > xσ) = (0.93± 0.06)× exp[−(0.720± 0.013)x]. (3)

This is equivalent (fit in the range of x between 1 and 12) to a number of σs deviation
in a normal distribution:

xeq. = (0.830± 0.004)x0.621±0.003, (4)

where x is the number of σs in the measurement, i.e. x = |H0−H0|
σ

. Hence, for
instance, a datum which is 3.0σ away for the expected value should not be inter-
preted as a 3.0σ tension, but a 1.6σ one in equivalent terms of a normal distribution
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(P (> xeq.) = 0.11). Likewise, a tension of 4.4σ (as for instance claimed by Ref. [9])
for a Hubble tension) is indeed a 2.1σ tension in equivalent terms of a normal distri-
bution, with an associated P (> xeq.) = 0.036 (1 in 28), which is not large but it may
happen as a random statistical fluctuation. For an even larger limit of the tension,
at 6σ, as pointed by using some different datasets [10], we would have a equiva-
lent 2.5σ with an associated P (> xeq.) = 0.012 (1 in 83), still not amazing.

5. Conclusions and discussion

We have examined the trend and dispersion of values of 163 measurements of H0

during 43 years (1976–2019). We observed a slightly growing trend (at 2σ level) in
the value of the measurements of H0, for which a random fluctuation interpretation
is not excluded. More significantly, the probabilities Q for the distribution of dif-
ferent measurements of H0 and their errors are extremely low, both with respect to
a constant value (weighted average of all the measurements) and with a linear fit.
We needed to remove 24–27 measurements to reach a statistically significant dataset
(Q ≥ 0.05).

In addition to the increasing precision of measurements, it is concluded from this
analysis that the error bars of the observed parameters have been largely underesti-
mated in 15–20% of the measurements, or the systematic errors of the observation
techniques were not fully considered. It should also be stated that, because of the
simplifying assumption made about the covariance of each observed measurement,
it is a conservative percentage.

In the light of the analysis carried out here, one would not be surprised to find
cases like the 4.4σ discrepancy seen between the best measurement using Supernovae
Ia in Ref. [9]. It is likely that the underestimation of error bars for H0 in many
measurements contributes to the apparent 4.4σ discrepancy. Here we have carried
out a recalibration of the probabilities with the present sample of measurements and
we find that the xσs deviation is indeed equivalent in a normal distribution to xeq.σs
deviation, where xeq. = 0.83x0.62. Hence, the tension of 4.4σ, estimated between the
local Cepheid–supernova distance ladder and cosmic microwave background (CMB)
data is indeed a 2.1σ tension in equivalent terms of a normal distribution with an
associated P (> xeq.) = 0.036 (1 in 28), which is not large but it may happen as
a random statistical fluctuation. This can be increased up to a equivalent tension
of 2.5σ in the worst of cases.
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Abstract: In this paper we represent a different approach to the calculation
of the perihelion shift than the one presented in common text books. We
do not rely on the Schwarzschild metric and the Hamilton-Jacobi technique
to obtain our results. Instead we use a weak field approximation, with the
advantage that we are not obliged to work with a definite static metric and
can consider time dependent effects. Our results support the conclusion of
Kř́ıžek [1] regarding the significant influence of celestial parameters on the
indeterminacy of the perihelion shift of Mercury’s orbit. This shift is thought
to be one of the fundamental tests of the validity of the general theory of
relativity. In the current astrophysical community, it is generally accepted that
the additional relativistic perihelion shift of Mercury is the difference between
its observed perihelion shift and the one predicted by Newtonian mechanics,
and that this difference equals 43” per century. However, as it results from the
subtraction of two inexact numbers of almost equal magnitude, it is subject
to cancellation errors. As such, the above accepted value is highly uncertain
and may not correspond to reality.

Keywords: general relativity, retardation, Mercury

PACS: 04.20.-q, 04.25.Nx, 95.10.Ce

1. Introduction

Under Newtonian physics, an object in an (isolated) bounded two-body system,
consisting of the object orbiting a spherical mass, would trace out an ellipse with
the massive object at a focus of the ellipse. The point of closest approach, called
the periapsis (or, because the central massive body in the Solar system is the Sun,
perihelion), is fixed. Hence, the major axis of the ellipse remains fixed in space. Both
objects orbit around the center of mass of this system, so they each have their own
ellipse, but the heavier body trajectory is smaller. In fact it can be much smaller if
the ratio between the masses is considerable. However, a number of effects in the
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Solar System cause the perihelia of planets to precess (rotate) around the Sun, or
equivalently, cause the major axis to rotate, hence changing its orientation in space.
The principal cause is the presence of other planets which perturb one another’s
orbit. Another (much less significant) effect is solar oblateness.

Mercury deviates from the precession predicted from these Newtonian effects.
This anomalous rate of precession of the perihelion of Mercury’s orbit was first
recognized in 1859 as a problem in celestial mechanics, by Urbain Le Verrier. His
re-analysis of available timed observations of transits of Mercury over the Sun’s disk
from 1697 to 1848 demonstrated that the actual rate of the precession disagreed from
that predicted from Newton’s theory by 38” (arcseconds) per tropical century [4]
(later it was estimated to be 43” by Simon Newcomb in 1882 [5]). A number of
ad hoc and ultimately unsuccessful solutions were proposed, but they seemed to
cause more problems. Le Verrier speculated that another hypothetical planet might
exist to account for Mercury’s behavior [6]. The previously successful search for
Neptune based on its perturbations of the orbit of Uranus led astronomers to place
some faith in this possible explanation, and the hypothetical planet was even named
Vulcan. Finally, in 1908, W. W. Campbell, Director of the Lick Observatory, after
meticulous photographic observations by Lick astronomer, Charles D. Perrine, at
three different solar eclipse expeditions, stated, ”In my opinion, Dr. Perrine’s work
at the three eclipses of 1901, 1905, and 1908 brings the observational side of the
famous intramercurial-planet problem definitely to a close,” see [7]. Since no evidence
of Vulcan was found and Einstein’s 1915 general theory accounted for Mercury’s
anomalous precession. Einstein could write to his friend Michael Besso, ”Perihelion
motions explained quantitatively...you will be astonished” [7].

In general relativity, this remaining precession, or change of orientation of the
orbital ellipse within its orbital plane, is explained by gravitation being mediated by
the curvature of spacetime, and by the fact that the trajectory must be a geodesic in
the curved space-time. Einstein showed that general relativity [8], [9] agrees closely
with the observed amount of perihelion shift. This was a powerful factor motivating
the adoption of general relativity.

Although earlier measurements of planetary orbits were made using conventional
telescopes, more precise measurements are now made using a radar. The total ob-
served precession of Mercury is 574.10”±0.65” per century [10] relative to the inertial
International Celestial Reference System (ICRS) (the current standard celestial ref-
erence system adopted by the International Astronomical Union (IAU). Its origin is
at the barycenter of the Solar System, with axes that are intended to be oriented
with respect to the stars.)

This precession can be attributed to the causes [10], [11] described in Table 1.
Thus, despite the efforts, theoretical predictions of the precession of perihelion for
Mercury do not full within observational results error bars and the discrepancy is at
best 0.56” per century or about 0.1%. This is not much but still requires explanation.
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Causes of the precession
of perihelion for Mercury
(arcsec/Julian century)

Cause

532.3035 Gravitational tugs of other solar bodies
0.0286 Oblateness of the Sun (quadruple moment)
42.9799 General Relativity effect (Schwarzschild - like)
−0.0020 Lense-Thirring precession

575.31 Total predicted

574.10± 0.65 Observed

Table 1: The different contributions to the precession of perihelion for Mercury
amount (arcsec/Julian century), theory vs. prediction.

In general relativity the perihelion shift δθ, expressed in radians per revolution,
is approximately given by [12]:

δθ =
6πGM

ac2 (1− e2)
, (1)

where G ' 6.67 · 10−11 m3kg−1s−2 is the universal gravitational constant and c '
3 · 108 ms−1 indicates the velocity of light in the absence of matter, M is the mass of
the Sun, a is the semi-major axis of the ellipsoidal trajectory and e is its orbital ec-
centricity. The above is based on calculating a geodesic in a Schwarzschild geometry,
that is in a geometry created by a static point mass. The framework of Schwarzschild
geometry does not allow us to take into account effects such as the motion of the
Sun with respect to the frame.

The other planets experience perihelion shifts as well, but, since they are far-
ther from the Sun and have longer periods, their shifts are lower, and could not be
observed accurately until long after Mercury’s. For example, the perihelion shift of
Earth’s orbit due to general relativity is theoretically 3.83868” per century and exper-
imentally 3.8387±0.0004”/cy, Venus’s is 8.62473”/cy and 8.6247±0.0005”/cy. Both
values have now been measured, with results in good agreement with theory [13].

Einstein’s general relativity (GR) is known to be invariant under general coordi-
nate modifications. This group of general transformations has a Lorentz subgroup,
which is valid even in the weak field approximation. This is seen through the field
equations containing the d’Alembert (wave) operator, which can be solved using
a retarded potential solution.

It is known that GR is verified by many types of observations. However, currently,
Newton–Einstein gravitational theory is at a crossroads. It has much in its favor ob-
servationally, and it has some very disquieting challenges. The successes that it has
achieved in both astrophysical and cosmological scales have to be considered in light
of the fact that GR needs to appeal to two unconfirmed ingredients, dark matter
and energy, to achieve these successes. Dark matter has not only been with us since
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the 1920s (when it was initially known as the missing mass problem), but it has also
become severe as more and more of it had to be introduced on larger distance scales
as new data have become available. Moreover, 40-year-underground and accelerator
searches and experiments have failed to establish its existence. The dark matter
situation has become even more disturbing in recent years as the Large Hadron Col-
lider was unable to find any super symmetric particle candidates, the community’s
preferred form of dark matter. While things may still take turn in favor of the dark
matter hypothesis, the current situation is serious enough to consider the possibility
that the popular paradigm might need to be amended in some way if not replaced al-
together. In our recent work we have sought such a modification. Unlike other ideas
such as Milgrom’s MOND [14], Mannheim’s Conformal Gravity [15], [16], [17], Mof-
fat’s MOG [18] or f(R) theories and scalar-tensor gravity [19], the present approach
is, the minimalist one adhering to the razor of Occam. It suggests to replace dark
matter by the retardation effect within standard GR. Fritz Zwicky noticed in 1933
that the velocities of Galaxies within the Comma Cluster are much higher than those
predicted by the virial calculation that assumes Newtonian theory [20]. He calcu-
lated that the amount of matter required to account for the velocities could be 400
times greater with respect to that of visible matter, which led to suggesting dark
matter throughout the cluster. In 1959, Volders, pointed out that stars in the outer
rims of the nearby galaxy M33 do not move according to Newtonian theory [21].
The virial theorem coupled with Newtonian Gravity implies that MG/r ∼ Mv2,
thus the expected rotation curve should at some point decrease as 1/

√
r. During the

seventies Rubin and Ford [22], [23] showed that, for a large number of spiral galax-
ies, this behavior can be considered generic: velocities at the rim of the galaxies do
not decrease— but they attain a plateau at some unique velocity, which differs for
every galaxy. We have shown that such velocity curves can be deduced from GR
if retardation is not neglected. The derivation of the retardation force is described
in previous publications [24], [25], [26], [27], [28], [29], [30], [31], see for example
Figure 1. It should be noted that “dark matter” effects on light rays (gravitational
lensing) are well handled when taking into account retardation [32]. The effects
of gravitational lensing and the explanation of the anomalous perihelion advance of
the planet Mercury where the first corroborated predictions of GR. Einstein made
unpublished work on gravitational lensing as early as 1912 [33] (see Figure 2). As
we mentioned previously in 1915 Einstein showed how GR explained the anomalous
perihelion advance of the planet Mercury without any arbitrary parameters [34] (for
a detailed account of Einstein’s previous unsuccessful attempts to obtain the same see
Weinstein [3]) , in 1919 an expedition led by Eddington confirmed GR’s prediction
for the deflection of starlight by the Sun in the total solar eclipse of May 29, 1919,
see [35], [36], making Einstein famous [34] instantly. The reader should recall that
there was a special significance to a British scientist confirming the prediction of
a German scientist after the bloody battles of world war I.

Gravitational retardation effects do not seem to be very important in the Solar
system, up to small corrections the dynamics is well described by Newtonian me-
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Figure 1: Velocity curve for M33. Observational points were obtained by Dr. Michal
Wagman, a former PhD student under my supervision, using [44]; the full line de-
scribes the rotation curve, which is the sum of the dotted line, describing the retar-
dation contribution, and the dashed line, which is Newtonian.

chanics, and even the small GR effects observed can be well explained by a constant
Schwarzschild metric, that is without time dependency effects of the metric. Still, it
is perhaps too early to dismiss any time dependent effects on account of the discrep-
ancy described in Table 1 with regard to the perihelion precession of Mercury which
is the reason for our study.

2. General relativity

The general theory of relativity is based on two fundamental equations, the first
being Einstein equations [37], [39], [40], [38]:

Gµν = −8πG

c4
Tµν , (2)

whereGµν stands for the Einstein tensor (see equation (8)), Tµν indicates the stress–energy
tensor (see equation (4)), (Greek letters are indices in the range 0− 3). The second
fundamental equation that GR is based on is the geodesic equation

d2xα

dp2
+ Γαµν

dxµ

dp

dxν

dp
= 0, (3)
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Figure 2: Light travelling toward the observer is bent due to the gravitational field
of a massive object, thus a distant star appears to the observer at an angle α with
resect to its true location.

where xα(p) are the coordinates of the particle in spacetime, p is a typical parame-
ter along the trajectory that for massive particles is chosen to be the length of the
trajectory (p = s), ũµ = dxµ

ds
or the proper time (p = τ = s

c
) uµ = dxµ

dτ
= cũµ is

the µ-th component of the 4-velocity of a massive particle moving along the geodesic
trajectory (increment of x per p) and Γαµν is the affine connection (Einstein summa-
tion convention is assumed). The stress–energy tensor of matter is usually taken in
the form

Tµν = (pr + ρc2)ũµũν − pr gµν . (4)

In the above, pr is the pressure and ρ is the mass density. We remind the reader
that lowering and raising indices is done through the metric gµν and inverse metric
gµν , such that uµ = gµνu

ν . The same metric serves to calculate s

ds2 = gµνdx
µdxν . (5)

The affine connection is connected to the metric as follows

Γαµν =
1

2
gαβ (gβµ,ν + gβν,µ − gµν,β) , gβµ,ν ≡

∂gβµ
∂xν

. (6)

Using the affine connection we calculate the Riemann and Ricci tensors and the
curvature scalar

Rµ
ναβ = Γµνα,β − Γµνβ,α + ΓσναΓµσβ − ΓσνβΓµσα, Rαβ = Rµ

αβµ, R = gαβRαβ (7)
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which, in turn, serves to calculate the Einstein tensor

Gαβ = Rαβ −
1

2
gαβR. (8)

Hence, the given matter distribution determines the metric through equation (2) and
the metric determines the geodesic trajectories through equation (3).

3. Linear approximation of GR – justification

Only in extreme cases of compact objects (black holes and neutron stars) and the
primordial reality or the very early universe does one need not consider the solution of
the full non-linear Einstein equation [24]. In typical cases of astronomical interest1

(certainly everywhere in the Solar system) one can use a linear approximation to
those equations around the flat Lorentz metric ηµν such that

gµν = ηµν + hµν , ηµν ≡ diag (1,−1,−1,−1), |hµν | � 1, (9)

ds2 = (ηµν + hµν)dx
µdxν . (10)

In order to appreciate the above statements, let us look at the Schwarzschild met-
ric [39]. This metric describes a static spherically symmetric mass distribution and
thus is less general than the approach we intend to develop in this paper. It does
have one advantage, however, and this is the ability to take into account strong
gravitational fields and not just weak ones. This advantage is irrelevant in most
astronomical cases in which gravity is weak and must be only considered for tra-
jectories near compact objects (black holes and neutron stars). Here we introduce
it just for the sake of making an order of magnitude estimate. The Schwarzschild
squared interval can be written as

ds2
Schwarzschild =

(
1− rs

r′

)
c2dt2 −

(
1− rs

r′

)−1

dr′2 − r′2
(
dθ2 + sin2 θ dΦ2

)
. (11)

In which r′, θ,Φ are spherical coordinates and the point massive body is located at
r′ = 0. The Schwarzschild radius is defined as

rs =
2GM

c2
(12)

in which M is the mass of the point particle. The most massive object in the Solar
system is the Sun with a Solar mass of Msun ' 1.99 ·1030 kg leading to rs ' 2950 m '
3 km. The deviation of the metric from the empty space Minkowski metric according
to equation (11) is

h00 = −rs
r′
. (13)

Here h00 is strongest on the Sun’s surface where r′ = 6.96 · 108 m in which h00 '
4.27 · 10−6, this is quite small (with respect to unity) indeed. For Mercury the closer
distance to the Sun (perihelion) is r′ = 4.6 · 1010 m hence h00 ' 6.41 · 10−8 at most.
Neglecting second order terms thus means neglecting terms of order 10−15 and seems
quite justified.

1Private communication with the late Professor Donald Lynden-Bell.
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4. Linear approximation of GR – the metric

One then defines the quantity

h̄µν ≡ hµν −
1

2
ηµνh, h = ηµνhµν , (14)

where h̄µν = hµν stands for non diagonal terms. For diagonal terms

h̄ = −h⇒ hµν = h̄µν −
1

2
ηµν h̄. (15)

It can be shown ([37] page 75, exercise 37, see also [38], [39], [40]) that one can choose
a gauge such that the Einstein equations are

h̄µν,α
α = −16πG

c4
Tµν , h̄µα,

α = 0. (16)

Equation (16) can always be integrated to take the form [41]:

h̄µν(~x, t) = −4G

c4

∫
Tµν(~x

′, t− R
c
)

R
d3x′,

t ≡ x0

c
, ~x ≡ xa, a, b ∈ [1, 2, 3],

~R ≡ ~x− ~x′, R = |~R|. (17)

For reasons why the symmetry between space and time is broken, see [42], [43]. The
factor before the integral is small: 4G

c4
' 3.3 ·10−44 in MKS units; hence, in the above

calculation one can take Tµν , which is zero order in hαβ. In the zeroth order:

ũ0 =
1√

1− v2

c2

≡ γ, ~̃u ≡ (ũ1, ũ2, ũ3) =
~v
c√

1− v2

c2

= ~βγ,

vµ ≡ dxµ

dt
, ~v ≡ d~x

dt
, v = |~v|, ~β ≡ ~v

c
, β = |~β|. (18)

And also
u0 = cγ, ~u ≡ (u1, u2, u3) = ~vγ. (19)

Assuming the reasonable assumption that the said massive body is composed of
particles of non relativistic velocities

ũ0 ' 1, ~̃u ' ~β, ũa � ũ0 for v � c, (20)

and also
u0 ' c, ~u ' ~v, ua � u0 for v � c. (21)

Let us now look at equation (4). We assume ρc2 � pr and, taking into account
equation (20), we arrive at T00 = ρc2, while other tensor components are significantly
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smaller. Thus, h̄00 is significantly larger than other components of h̄µν which are
ignored from now on. One should notice that it is possible to deduce from the gauge
condition in equation (16) the relative order of magnitude of the relative components
of hµν

h̄α0,
0 = −h̄αa,a ⇒ h̄00,

0 = −h̄0a,
a, h̄b0,

0 = −h̄ba,a. (22)

Thus, the zeroth derivative of h̄00 (which contains a 1
c

as x0 = ct) is the same
order as the spatial derivative of h̄0a meaning that h̄0a is of order v

c
smaller than h̄00.

And the zeroth derivative of h̄0a (which appears in Equation (22)) is the same order
as the spatial derivative of h̄ab. Meaning that h̄ab is of order v

c
with respect to h̄0a

and of order (v
c
)2 with respect to h̄00.

In the current approximation, the following results hold:

h̄ =ηµν h̄µν = h̄00, (23)

h00 =h̄00 −
1

2
η00h̄ =

1

2
h̄00, (24)

haa =− 1

2
ηaah̄ =

1

2
h̄00. (25)

(The underline aa signifies that the Einstein summation convention is not assumed.)

hµν = h̄µν = 0, µ 6= ν. (26)

We can summarize the above results in a concise formula

hµν = h00δµν . (27)

in which δµν is Kronecker’s delta. Thus,

ds2 = (ηµν+hµν)dx
µdxν = (ηµν+h00δµν)dx

µdxν = (1+h00)c2dt2−(1−h00)d~x2, (28)

and the proper time is

dτ = dt
√

(1 + h00)− (1− h00)β2 ' dt

[√
1− β2 +

1

2
h00

1 + β2√
1− β2

]
, (29)

for slow particles this reduces to

dτ = dt

[
1 +

1

2
h00

]
, (30)

and thus

~u =
d~x

dτ
=
d~x

dt

dt

dτ
=

~v√
1− β2 + 1

2
h00

1+β2√
1−β2

. (31)

The above somewhat complex relation is the main reason that we will prefer to
perform our analysis with ~u rather than ~v keeping in mind that in the Solar system
~u ' ~v for slow moving bodies (with respect to the speed of light).
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It will be useful to introduce the gravitational potential φ which is defined below
and can be calculated using Equation (17),

φ ≡ c2

4
h̄00 = −G

c2

∫
T00(~x′, t− R

c
)

R
d3x′ = −G

∫
ρ(~x′, t− R

c
)

R
d3x′. (32)

From the above definition and equation (24) it follows that

h00 =
2

c2
φ, φ =

c2

2
h00. (33)

Let us now calculate the affine connection in the linear approximation

Γαµν =
1

2
ηαβ (hβµ,ν + hβν,µ − hµν,β) . (34)

Taking into account equation (27), we arrive at the result

Γaµν =
1

2
(ηaµh00,ν + ηaνh00,µ + h00,aδµν) . (35)

The above equation is only correct for a Latin index a. This is our main concern, as
we will concentrate on the analysis of ua (rather than u0).

5. Linear approximation of GR – the trajectory

Let us start calculating the trajectory by inserting equation (35) into equation (3),
we arrive at the equation

dua

dτ
= −Γaµνu

µuν = uauνh00,ν −
1

2
uνuνh00,a. (36)

We may write

uνh00,ν = h00,ν
dxν

dτ
=
dh00

dτ
. (37)

Thus
dua

dτ
= ua

dh00

dτ
− 1

2
uνuνh00,a. (38)

As the current analysis is only valid to first order in h00 and since the right-hand side
of the equation is already linear in h00, we only need to consider the other expressions
in the right-hand side to zeroth order in hmn, thus

dua

dτ
= u(0)adh00

dτ
− 1

2
u(0)νu(0)νh00,a. (39)

It follows that according to equation (5),

c2 =
ds2

dτ 2
= ηµνu

(0)µu(0)ν = (u(0)0)2 − u(0)au(0)a (40)
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and also
u(0)νu(0)ν = (u(0)0)2 + u(0)au(0)a = 2(u(0)0)2 − c2. (41)

Thus we obtain
dua

dτ
= u(0)adh00

dτ
+

(
1

2
c2 − (u(0)0)2

)
h00,a, (42)

or in vector form
d~u

dτ
= ~u(0)dh00

dτ
+

(
1

2
c2 − (u(0)0)2

)
~∇h00, (43)

In term of the potential φ this takes the form

d~u

dτ
=

2~u(0)

c2

dφ

dτ
+

(
1− 2(u(0)0)2

c2

)
~∇φ. (44)

If the body is slowly moving such that β → 0 it follows that τ ' t, ~u ' ~v , u(0)0 ' c
and thus

d~v

dt
=

2~v(0)

c2

dφ

dt
− ~∇φ. (45)

If φ does not depend explicitly on time: dφ
dt

= ~v · ~∇φ and we obtain

d~v

dt
= 2~β(~β · ~∇φ)− ~∇φ ' −~∇φ. (46)

Thus we are back to the Newtonian equation of motion, which can be used as a good
approximation for most purposes to derive planetary motion.

5.1. “Angular Momentum”

Let us perform a vector multiplication of equation (43) with the vector ~r =
(x1, x2, x3). We obtain

~r × d~u

dτ
= ~r × ~u(0)dh00

dτ
+

(
1

2
c2 − (u(0)0)2

)
~r × ~∇h00. (47)

Now suppose that h00 = h00(r) in which r = |~r|, in this case ~r · ~∇h00 = 0. And thus

d(~r × ~u)

dτ
= ~r × d~u

dτ
= ~r × ~u(0)dh00

dτ
= (~r × ~u)

dh00

dτ
, (48)

the last equation sign is correct to first order in h00 (which is the order of our entire
analysis). We now define an “angular momentum”

~J ≡ m~r × ~u ' m~r × ~v (49)

in which m is the mass of the particle under consideration. The right-hand side of
the equation is correct for slow bodies, in the Solar system. It follows that

d ~J

dτ
= ~J

dh00

dτ
. (50)
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Hence, for each cartesian component

dJx
dτ

= Jx
dh00

dτ
,

dJy
dτ

= Jy
dh00

dτ
,

dJz
dτ

= Jz
dh00

dτ
. (51)

Or also

d(ln Jx − h00)

dτ
= 0,

d(ln Jy − h00)

dτ
= 0,

d(ln Jz − h00)

dτ
= 0. (52)

Thus
~J = ~J0e

h00 ' ~J0(1 + h00) (53)

in which ~J0 is constant. This implies that the “angular momentum” has a size that
depends on h00

J ≡ | ~J | = | ~J0|eh00 ≡ J0eh00 (54)

and a fixed direction

Ĵ ≡
~J

J
=

~J0

J0

≡ Ĵ0. (55)

We conveniently choose this direction to point in the z axis, hence,

~J = ~J0e
h00 = J0e

h00 ẑ, Jx = Jy = 0. (56)

Since the direction of ~J is fixed and perpendicular to the direction of both ~r and ~u,
it follows that both vectors lie in the x−y plane. Thus we can conveniently describe
their motion using the standard polar coordinates r, θ. We underline that unlike the
angular momentum vector of classical mechanics this vector is only fixed in direction
but not in size. We also underline that nowhere did we imply that the velocity of
the particle must be small with respect to the velocity of light.

5.2. “Energy”

Let us make a scalar multiplication of equation (43) with ~u to obtain

~u · d~u
dτ

= ~u2dh00

dτ
+

(
1

2
c2 − (u0)2

)
~u · ~∇h00. (57)

For a h00 without explicit time dependence we have

dh00

dτ
= ~u · ~∇h00 + ũ0∂h00

∂t
= ~u · ~∇h00. (58)

It follows that
1

2

d~u2

dτ
=

(
1

2
c2 + ~u2 − (u0)2

)
dh00

dτ
, (59)

the term in parenthesis in the right-hand side needs only to be evaluated to zeroth
order in h00 and this can be done using equation (40),

1

2

d~u2

dτ
=

(
1

2
c2 − c2

)
dh00

dτ
= −1

2
c2dh00

dτ
= −dφ

dτ
, (60)
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in which we use the definition for the potential given in equation (33). Hence, we
obtain the conserved “energy”

E ≡ 1

2
m~u2 +mφ ' 1

2
mv2 +mφ. (61)

The “energy” is defined for either fast or slow bodies, while the right hand ' relates
only to slow bodies.

5.3. Polar coordinates

Introducing polar coordinates, we may write equation (49) and equation (61) as
follows

E =
1

2
m
[
ṙ2 + r2θ̇2

]
+mφ, J = mr2θ̇, ṙ ≡ dr

dτ
, θ̇ ≡ dθ

dτ
. (62)

The above forms seem quite classical, however, one should remember that the deriva-
tives are with respect to the proper time of the body and not with respect to the
global t coordinate. One should also recall that J is not constant and can vary to a
small extent. Thus we eliminate θ̇ and obtain

E =
1

2
mṙ2+

J2

2mr2
+mφ =

1

2
mṙ2+

J2
0e

2h00

2mr2
+mφ ' 1

2
mṙ2+

J2
0

2mr2
+mφ+

2J2
0φ

mc2r2
. (63)

The above result is quite classical except the last term which is a relativistic cor-
rection as is disclosed by the 1

c2
appearing there. To put the above result in a form

which is closer to the forms which are found in the literature [12, 40] we make the
following observation. We have written d~x2 = dr2 +r2

(
dθ2 + sin2 θdΦ2

)
as is usually

done for spherical coordinates. But notice that r in the above is not strictly a radial
coordinate which is defined as the circumference, divided by 2π, of a sphere centered
around the massive body. In fact from equation (28) it is clear that the appropriate
radial coordinate is

r′ = r
√

1− h00 (64)

which is a small correction to r. Now calculating the differential dr′ it follows that

dr′ = dr
√

1− h00 + rd
√

1− h00 = dr
1− h00 − 1

2
r dh00

dr√
1− h00

. (65)

If we assume a Schwarzschild metric according to equation (13),

h00 = −rs
r′

= − rs

r
√

1− h00

⇒ h00

√
1− h00 = −rs

r
⇒ h00 = −rs

r
, r′ ' r � rs,

(66)
where the last equality is correct to first order. Alternatively one can use equation 32
to calculate the gravitational potential for a static point mass to obtain

φ = −GM
r

(67)
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and then plug this into equation (33) to obtain again

h00 =
2

c2
φ = −2GM

c2r
= −rs

r
. (68)

It now follows that
dh00

dr
=
rs
r2

= −h00

r
. (69)

Plugging equation (69) into equation (65) leads to

dr′ = dr
1− h00 − 1

2
r dh00

dr√
1− h00

= dr
1− 1

2
h00√

1− h00

. (70)

Hence, to first order in h00,
dr′ = dr. (71)

Using the results equation (64) and equation (71), the interval given in equation (28)
can be rewritten as

ds2 =(1 + h00)c2dt2 − (1− h00)d~x2

=(1 + h00)c2dt2 − (1− h00)dr′2 − r′2
(
dθ2 + sin2 θdφ2

)
. (72)

As to first order in h00

1− h00 =
1

1 + h00

, (73)

and taking into account equation (13) we obtain

ds2 = (1− rs
r′

)c2dt2 − (1− rs
r′

)−1dr′2 − r′2
(
dθ2 + sin2 θdφ2

)
= ds2

Schwarzschild. (74)

Thus to first order our metric is identical to Schwarzschild’s for the case of a static
point particle. This makes our analysis superior as it addresses the case of a general
density distribution and does not ignore the possibility of time dependence which is
crucial for retardation effects to take place.

In terms of r′ we may write the energy as

E =
1

2
mṙ′2 +

J2
0e

2h00

2mr′2
(1− h00) +mφ =

1

2
mṙ′2 +

J2
0

2mr′2
(1 + h00) +mφ

=
1

2
mṙ′2 +

J2
0

2mr′2
+mφ+

J2
0φ

mc2r′2
=

1

2
mṙ′2 +

J2
0

2mr′2
− GMm

r′
− GMJ2

0φ

mc2r′3
. (75)

The relativistic correction has a 1
r′3

dependence and the is greater the more the object
is close to the gravitating point mass which represents the Sun. We also notice that
in terms of r′ one may write up to first order in h00,

J0 = mr′2θ̇ (76)

which is reminiscent of the well-known classical result regrading the conservation of
angular momentum.
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5.4. Integration of the equations of motion

Using equation (76), we may write

ṙ′ = θ̇
dr′

dθ
=

J0

mr′2
dr′

dθ
. (77)

Defining2

u′ ≡ 1

r′
⇒ ṙ′ = −J0

m

du′

dθ
. (78)

Plugging equation (78) into equation (75), we arrive at the result

Ẽ ≡ 2mE

J2
0

=

(
du′

dθ

)2

+ u′2 − 2GMm2

J2
0

u′ − 2GM

c2
u′3, (79)

or (
du′

dθ

)2

= Ẽ − u′2 +
2GMm2

J2
0

u′ +
2GM

c2
u′3. (80)

Which is exactly Padmanabhan [12] equation 7.114 (page 318), with a slightly dif-
ferent notation

LPadmanabhan = J0, εPadmanabhan = mc2

√
1 + 2

E

mc2
. (81)

The analysis of Padmanabhan [12] of equation (80) leads to equation (1) and will
not be repeated here due to lack of space. The interested reader is referred to the
original text. We only mention that the semi-major axis can be calculated by

a =
J2

0

GM(1− e2
eccentricity)m2

(82)

and the eccentricity can be calculated as:

eeccentricity =

√
1 +

2ENJ2
0

G2M2m3
, EN ≡ εPadmanabhan −mc2. (83)

Recently Kř́ıžek [2] has commented regarding the uncertainties related the approxi-
mation needed in order to derive equation (1) from equation (80). The integration of
equation (80) involves elliptic functions, and the derivation of equation (1) is not ex-
act but involves approximations to those integrals, thus errors are introduced which
should be accounted for.

2The symbol u′ has nothing to do with the previously defined uν and is chosen this way in order
to comply with the symbol used in the literature [12].
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6. Metric correction and the gravitational potential

So far we have considered only a naive model in which the Sun was taken to
be a static point particle in the inertial frame, this has led us from equation (67)
to equation (1). However, we can certainly do better, as it is well known that
equation (32) can be integrated for a particle p of mass Mp moving in an arbitrary
trajectory with velocity ~vp(t), resulting in a Liénard-Wiechert potential [46], [47], [41],

φLWp = − GMp

Rp(1− R̂p · ~βp)

∣∣∣∣∣
trp

, R̂p =
~Rp

Rp

, trp = t− Rp(trp)

c
, Rp(t) = |~x− ~xp(t)|.

(84)
The peculiar thing about this equation is that it must be evaluated at a retarded
time trp which is only given in terms of an implicit equation. This equation requires
a knowledge of the evaluation point of the potential and the knowledge of the particles
trajectory for its solution, which is highly inconvenient. The derivative of the global
time coordinate t with respect to the particular retardation time related to a certain
particle is

dt

dtrp
=

1

1− R̂p · ~βp

∣∣∣∣∣
trp

' 1. (85)

Which implies that for a slow moving particle with βp � 1 we arrive at the classical
gravitational potential

φLWp ' φp = −GMp

Rp(t)
. (86)

If many slow moving bodies affect a particular body, this body will move under the
influence of a potential

φ =
N∑
p=1

φp = −
N∑
p=1

GMp

Rp(t)
. (87)

This is essentially Kř́ıžek’s [1] equation (7) (given in terms of potential rather than
force). In the Mercury case the most dominant body influencing its trajectory is
the Sun which is much more massive than the other planets in the Solar system,
thus to a zeroth order approximation we can ignore the other planets altogether.
However, for more subtle effects such as the precession of the perihelion for Mercury
they cannot be ignored. Indeed most of the precession can be attributed to the
effect of the various planets as is indicate in the first row of Table 1, see [10], [11].
Kř́ıžek’s [1] has correctly criticized the lack of any error bar to this number which
must result from the uncertainty in the other planet masses and trajectories. This
should be contrasted with the uncertainty attributed to the observed precession of
the perihelion for Mercury in the same table.

As indicated previously relativistic corrections in equation (84) are only relevant
for fast moving bodies with a considerable β. The highest β in the Solar system is
for Mercury itself with v ' 47.36 · 103 km/s yielding a β ' 1.6 · 10−4. However, the
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highest velocity among the other planets affecting, Mercury’s orbit is Venus, with
v ' 35.0 · 103 km/s yielding a β ' 1.2 · 10−4. Thus the relativistic corrections are
small corrections to the contribution the other planets make to the gravitational
potential experienced by Mercury, those contributions are quite small even before a
relativistic correction is applied. It thus remains to analyze the corrections to the
gravitational potential of the Sun.

The Schwarzschild based analysis, as well as the one presented in the previous
sections assumes that the Sun is static and is located at the origin of axes. The
Liénard-Wiechert potential described above allows us to take into account various
corrections to the above simplified assumptions. The Sun need not be located at the
origin of axis, and it can be moving with respect to the inertial frame. The motion of
the Sun as well as the time gravity propagates from the Sun to Mercury all affect the
gravitational potential. All those effects are small but not necessarily of the same
magnitude, hence we need to evaluate there relative strengths.

Classical mechanics teaches us that a frame in which the Sun is located at the
origin of axis is not inertial. A classical system which is inertial is one in which the
origin of axis is located at the center of mass. This is only true in classical mechanics,
however, the relativistic engine effect described in [48], [49], [50], [51], [52], [53], [54]
shows that the relativistic retardation phenomena may cause even the center of mass
to accelerate, and thus cannot be used in strictly fixing an inertial frame.

Never the less, we shall assume for now that the center of mass does define an
inertial frame and discuss the effect of the motion of the Sun with respect to it.
The velocity of the Sun from the center of mass is estimated to be v ' 11 m/s,
see [55], yielding a β ' 3.7 · 10−8. The difference between the potential φLW sun and
the potential φ given in equation (67) is defined as

∆φ ≡ φLW sun − φ, φLW sun = φ+ ∆φ. (88)

The difference can be written in terms of three terms

∆φ =∆φβ + ∆φtr + ∆φd,

∆φd =−GMsun

(
1

Rsun(t)
− 1

r

)
, Rsun(t) = |~x− ~xsun(t)|,

∆φtr =−GMsun

(
1

Rsun(tr)
− 1

Rsun(t)

)
, tr = t− Rsun(tr)

c
,

∆φβ =−GMsun

(
1

(1− R̂sun(tr) · ~βsun(tr))Rsun(tr)
− 1

Rsun(tr)

)
. (89)

Those terms can be approximated to first order as follows

∆φd '− φ (x̂ · x̂sun)
xsun

r
, x̂ ≡ ~x

|~x|
=
~x

r
, x̂sun ≡

~xsun

|~xsun|
,

∆φtr =−∆φβ = φ (x̂ · ~βsun), (90)
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where the equality holds only to first order. It is apparent that ∆φtr and ∆φβ cancel
each other to first order in β as expected, while second order corrections in β are
negligible. Thus we may write a more accurate potential due to the Sun as

φLW sun = φ
(

1− (x̂ · x̂sun)
xsun

r

)
, (91)

where the equality holds only to first order. Taking into account the distance of the
Sun from the barycenter (see Figure 3 of Kř́ıžek [1]) it follows that it of the order of
the Sun’s diameter, while the exact trajectory of the Sun with respect to the Solar
system barycenter is quite complex. Thus

xsun

r
' 2 Sun Radius

Mercury Perihelion
' 2

6.96 · 108

4.60 · 1010
' 3%. (92)

The analytical approach described above is not useful for calculating the trajectory
in the presence of the ∆φ potential correction. As now the potential depends on
time and thus the energy is not strictly conserved, moreover, the potential depends
on the polar angle and thus angular momentum is not conserved in an exact sense.
Thus it seems best to integrate the equations numerically, however, this is beyond
the scope of the present paper. A crude model that can accommodate the present
approach would be to replace the Sun’s mass with an effective mass

φLW sun = −GMeff

r
, Meff ≡Msun(1± 0.03). (93)

Thus the anomalous perihelion shift is not the value given by equation (1) but rather
by

δθ =
6πGMeff

ac2 (1− e2)
, (94)

for Mercury the semi-major axis is a ' 57.909 · 106 km and the eccentricity is
e ' 0.2056 thus:

δθ = 43”/cy ± 1.3”/cy. (95)

Thus the calculated value can be easily put within the error bar of the observed
value as we recall that the discrepancy is only about 0.56” per century. Other
uncertainties may arise regarding the Newtonian contributions of the other planets
to the gravitational potential [1].

7. Conclusions

We have shown that one can solve the Mercury trajectory problem using the weak
gravitational approximation to GR and without using the Schwarzschild metric. This
is contrary to the claims that this problem can only be solved in the framework of
strong gravity [12]. In fact it can easily be seen that the weak gravity approximation
will suffice anywhere in the Solar system, and Mercury is no exception to this rule.

60



We have presented a solution to the current discrepancy between the observed and
calculated perihelion shift although the solution is crude and numerical simulations
may reveal more details.

The weak field approximation takes in account retardation, however, the retar-
dation correction is of order β2 as should be expected and is thus unimportant in the
Mercury trajectory problem, certainly comparing to the corrections related to the
motion of the center of the Sun with respect to the barycenter of the Solar system. In
this respect the Mercury perihelion problem is quite different than the “dark matter”
problem, although the weak gravity approach can handle them both.
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Abstract: Description of space as the 3D surface of a 4D ball allows a dy-
namic solution to the cosmological development of space and opens the linkage
between local structures and space as a whole. In such a holistic perspective,
all velocities in space are linked to the 4D velocity of space and the expan-
sion of local gravitationally bound structures to the expansion of the spherical
structure. Space works as a spherical pendulum: Mass in space has gained its
rest energy as the energy of motion against the release of gravitational energy
in a contraction phase and pays it back to gravitational energy in the ongoing
expansion phase. Following the zero-energy principle, local structures in space
are formed against release of the global gravitational energy via local tilting
of space resulting in a system of nested energy frames that relates all energy
states in space to the state of rest in hypothetical homogeneous space. The
zero-energy approach referred to as the Dynamic Universe (DU) model [1],
honors time and distance as universal coordinate quantities. Local gravita-
tional systems expand in direct proportion to the expansion of space. Atomic
clocks in motion or at a lowered gravitational potential run slower due to their
different energy state, the state of motion and gravitation. DU produces pre-
cise, parameter-free predictions for cosmological observables and local physical
phenomena in full agreement with observations and allows an understandable
picture of the physical reality. Mass appears as the wavelike substance for the
expression of energy and Mach’s principle obtains a quantitative expression
as the work an accelerating object does against the global gravitation arising
from the rest of space.

Keywords: cosmology, relativity, philosophy of science, unifying theory
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1. Introduction

A primary challenge of natural sciences in the new millennium is to cure the gap
between metaphysics and empiricism – and puzzle out the obstacles to a unified the-
ory and an understandable picture of reality. Antique science flourished via its strong
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philosophical impact but faded away due to the lack of supporting empirical science.
The fast development of mathematical physics has led to the opposite; theories are
diversified, they are more like mathematical descriptions of observations; they pro-
vide precise predictions but lack a solid metaphysical basis and an understandable
picture of reality. Modern science has increased our understanding of physics from
elementary particles to cosmological structures and produced information that allows
re-evaluation of the basis. By switching from the observer-oriented perspective of the
theory of relativity to a system-oriented perspective, relativity is expressed in terms
of locally available energy – without scarifying absolute time and distance as central
base units in physics and coordinate quantities essential for human comprehension.
Such a holistic perspective is obtained by describing the 3D space as the surface of
a 4D ball with the energies of motion and gravitation in balance. For maintaining
the zero-energy balance of motion and gravitation, local phenomena are linked to the
rest of space; motion in space is linked to the motion of space in the fourth dimen-
sion, and local gravitation is linked to the gravitation arising from space as a whole.
Relativity is a direct consequence of the conservation of the overall zero-energy bal-
ance in the system. The buildup of local kinetic energy in space is counterbalanced
by a reduction in the rest energy of the object in motion which results in a reduction
of the characteristic frequency of atomic oscillators. Close to mass centers in space,
local bending of space reduces the local velocity of light and locally available rest
energy observed, e.g., as the gravitational shift of clock frequencies. There is no need
for distorted time and distance needed in the kinematic solution of relativity. In the
holistic perspective, relativity is relativity between a local and the whole rather than
relativity between an object and the observer. Everything in space is interconnected.

2. Energy buildup in space

Global gravitational energy
The gravitational energy of mass m in spherically closed space is expressed in terms
of the mass equivalence M” = 0.776 ·MΣ at the center of the 4D ball closing space,
Fig. 1. It is obtained by integrating the gravitational energy in homogeneous space,

Eg(m) = − 2

π

GmMΣ

R4

π∫
0

sin2θ

θ
dθ = −0.776 ·GmMΣ

R4

= −GmM
′′

R4

, (1)

where G = 6.67 · 10−11 [Nm2/kg2] is the gravitational constant, R4 the 4-radius
of space, MΣ = Σm the total mass in space, and M” the mass equivalence at the
4-center of space.

The dynamic zero-energy balance
The primary energy buildup is described as a contraction-expansion process of spher-
ically closed space. The rest energy appears as the energy of motion obtained against
the release of gravitational energy in the contraction of spherical space towards sin-
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Figure 1: The dynamics of spherically closed space is determined by the balance
between the energies of gravitation and motion. The rest energy of a local object
is counterbalanced by the gravitational energy arising from the rest of space. The
gravitational energy of mass m due to the rest of space is expressed as the effect of
the mass equivalence M” representing the total mass MΣ at the 4-center of space.

gularity; in the ongoing expansion phase, the energy of motion is paid back to grav-
itational energy. Such an interpretation assumes a metric fourth dimension, repre-
senting the direction of the 4-radius of space and time as a universal scalar allowing
the study of velocity and momentum equally in the three space directions and in the
fourth dimension. Applying the zero-energy principle, the sum of the total gravita-
tional energy and the total energy of motion, expressed as E = c|p| in the fourth
dimension, the direction of the 4-radius, is zero, Fig. 2,

Em + Eg = MΣc
2
0 −

GMΣM
′′

R4

= 0. (2)

As a demand of the zero-energy balance, the maximum velocity in space is equal
to the velocity of space in the fourth dimension,

c0 = ±
√
GM ′′/R4 ≈ 300 000 [km/s]. (3)

The current estimate for today’s 4-radius R4 ≈ 13.7 · 109 [ly], resulting in MΣ ≈
2.3 · 1053 [kg] and the average mass density ρ ≈ 5 · 10−27 [kg/m3] which is the Fried-
mann critical mass density equivalence in DU framework. The buildup of the rest
energy in the pre-singularity contraction phase cancels the assumed instant Big Bang
event of the standard model of cosmology (SC). The singularity in DU is a state of
extreme excitation of the energies of gravitation and motion, followed by the turn to
expansion at extreme velocity (like the inflation in SC) which has gradually slowed
down to the present velocity of light. The deceleration rate of the present velocity
of light is dc4/c4 ≈ −3.6 · 10−11/year. Such a change is observable only indirectly
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Figure 2: The buildup and release of the rest energy of matter as the energy of
motion via contraction and expansion of spherically closed space.

because the frequency of atomic clocks and the rate of physical processes, in general,
are directly proportional to the velocity of light.

Buildup of local structures in space
For conserving the balance of the energies of gravitation and motion in a local mass
center buildup, the total gravitational energy is divided, via tilting of local space,
into orthogonal components with the local gravitational energy in the local space
direction and the reduced global gravitational energy in the local fourth dimension.
The velocity of free fall, vff , of mass m is obtained against the reduction of the velocity
of space in the fourth dimension, and the corresponding kinetic energy against the
release of the rest energy of the falling object and the release of local gravitational
energy related to the reduction of the global gravitational energy

Ekin = ∆Eg = Eg(0) (1− cosϕ) =
GMm

R
, (4)

where ϕ is the tilting angle of local space at distance R from mass center M , Fig. 3.
The local gravitational state is characterized by the gravitational factor δ, the

ratio of the local gravitational energy and the global gravitational energy

δ =
GMm/R

GM ′′m/R4

=
∆Eg
Eg(0)

= 1− cosϕ =
GM

c2
0R

, (5)

where the last form is obtained by applying equation (3). As illustrated in Fig. 3,
the velocity of space in the local fourth dimension, determining the local velocity of
light, c, at gravitational state δ is

c = c0 cosϕ = c0(1− δ). (6)

Any motion and momentum in space is associated with the motion and mo-
mentum of space in the local fourth dimension as orthogonal components. Using
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Figure 3: (a) The overall energy balance in space is conserved via tilting of space
in local mass center buildup creating the kinetic energy of free fall and the local
gravitational energy. (b) Due to the tilting, the velocity of free fall, vff , is obtained
against a reduction of the velocity of space in the local fourth dimension.

a complex quantity notation, with i as the imaginary unit, the quantity in the fourth
dimension as the imaginary part, and the quantity in a space direction as the real
part, the total momentum of mass m moving at velocity β = v/c in space is

ptotal = |p + imc| =
√
p2 + (mc)2 (7)

and the total energy of motion

Em(total) = c0|p + imc| = c0

√
p2 + (mc)2, (8)

which is formally identical to the corresponding equation in special relativity.
As illustrated in Fig. 4, the buildup of momentum in space is counterbalanced

with a reduction of the rest momentum pIm of the moving object

pIm(β) = pIm(0)
√

1− β2 (9)

which means that the rest energy of an object moving at velocity β is reduced as

Erest(β) = c0|pIm(0)| = Erest(0)

√
1− β2. (10)

Combining the effect of the gravitational state on the local velocity of light, the
rest energy of mass m moving at velocity β = v/c at gravitational state δ is

Erest(δ,β) = Erest(0,0)(1− δ)
√

1− β2. (11)

The system of nested energy frames
Mass center buildup occurs in several steps; dents around planets are dents in the
larger dent around the Sun – which is a local dent in the much larger Milky Way dent.
The energy structure of space can be illustrated as a system of nested energy frames
extending from hypothetical homogeneous space to any local structure, Fig. 5. In
each step, the energy available in a subframe formed is reduced.
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Figure 4: In DU space, buildup of velocity v at constant gravitational potential
requires insertion of the energy c0∆mc which results in the total energy Etot =
c0 (m+ ∆m) c, and momentum p = (m+ ∆m)v in the direction of the real axis (in
a space direction)

.

3. Relativity in DU framework

In DU, relativity is a direct consequence of the conservation of the zero-energy
balance in space. The quantum mechanical solution of the frequency of atomic
oscillators is

f =
Ee(rest)

h
F [α,∆ (n, j)] , (12)

where Ee(rest) is the rest energy of the oscillating electrons, α is the fine structure
constant, and ∆(n, j) gives the difference of the quantum states related to the os-
cillation. In the DU framework, the rest energy is a function of the local state of
motion and gravitation as given in equation (11) which means that, in a local frame,
the frequency of a clock moving at velocity β at gravitational potential δ is

f = f0 (1− δ)
√

1− β2, (13)

where f0 is the frequency of the clock in the parent frame of the local energy frame.
Equation (13) is the DU replacement of Schwarzschild’s equation for the time dilation
in general relativity

dt = dt0
√

1− 2δ − β2. (14)

In the Earth’s gravitational frame, the difference between equations (13) and (14)
appears only in the 18th to 20th decimal.

In DU space, the local velocity of light is locked to the local 4D velocity of space.
Bending of the light path passing a mass center as well as the Shapiro delay are direct
consequences of the slower velocity of light and the increased distance due to the dent
around a mass center. The motion of a mass center in its parent frame, like the Earth
in the solar gravitational frame draws the local dent with the motion thus conserving
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Figure 5: The system of nested energy frames. The rest energy in the nth (local)
frame is subject to reductions due to the motions and gravitational states of the local
frame in all its parent frames – and is finally related to the rest energy the object
would have at rest in hypothetical homogeneous space.

the velocity of light at a fixed gravitational state in the Earth gravitational frame,
which gives a simple explanation to the zero-result in the early experiments on the
velocity of light like the Michelson-Morley experiment. The frequency of atomic
clocks is directly proportional to the local velocity of light which means that the
velocity of light is observed unchanged when measured with atomic clocks.

The signal transmission time, e.g., from a satellite to a receiver on the rotating
Earth can be calculated from the actual distance from the satellite at the time the
signal is sent to the location of the receiver at the time the signal is received. Such
a calculation conveys the Sagnac correction needed in the GR/SR framework as
a separate correction for the motion of the receiver during the signal transmission.

Rather than relativity between an object and the observer like in the SR/GR
framework, relativity in DU is relativity between a local and the whole. Any state
of gravitation and motion in space has its history that links it to the state of rest in
the local frame, the state of the local frame in the parent frame, and finally to the
state of rest in hypothetical homogeneous space. Time and distance are universal
coordinate quantities of the observational reality essential for an understandable
picture of physical reality.
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Planck’s constant and the nature of quantum and matter wave
Without any assumptions tied to DU, Planck’s equation can be formally solved from
Maxwell’s equations by solving the energy that a single electron transition in a one-
wavelength dipole emits into a cycle of electromagnetic radiation. A point source
can be regarded as a one-wavelength dipole in the fourth dimension, where space
moves the distance cdt = λ (equal to the 4D line element in the SR/GR framework)
in one cycle

h = 1.1049 · 2π3e2µ0 · c. (15)

The solution links Planck’s constant to primary electrical constants; the unit
charge e and vacuum permeability µ0, and shows that the velocity of light, c, is a
hidden factor in the Planck constant. We define the intrinsic Planck constant by
removing the velocity of light from h as h0 = h/c, which allows writing the Planck
equation in the form

E =
h0

λ
c2 = mλc

2, (16)

where the quantity h0 = h/c has the physical dimension of kilogram [kg] and is the
mass equivalence of a quantum of radiation or a cycle of radiation emitted by a unit
charge transition in the emitter. The mass equivalence of radiation is the counterpart
of the Compton wavelength λm = h0/m as the wavelength equivalence of mass m.
The reformulation does not change physics but allows an illustrative picture of the
nature of mass and quantum, and the unified expressions of energy:

Rest energy of mass E =
h0

λm
c2 = mc2. (17)

Electromagnetic radiation E =
h0

λ
c2 = mλc

2. (18)

Coulomb energy E =
e2µ0

4πr
c2 = α

h0

2πr
c2 = mEM · c2. (19)

As shown by a detailed analysis, the factor c2 in equations (16) to (19) is the
product of the 4D velocity c0 of homogeneous space and the local velocity of light c
equal to the 4D velocity of local space. In the Earth’s gravitational frame c differs
from c0 at ppm-level. Following the new formulation, e.g., quantum states (like
solutions of Schrödinger’s equation in closed systems) appear as energy minima of
mass wave states fulfilling the relevant resonance conditions. The de Broglie wave is
described as a mass wave carrying the momentum of a moving mass object – much
in the way de Broglie was looking for.

4. Cosmological consequences

Dynamics of the expansion
DU gives a precise prediction for the development of the rate of the expansion of
space

c0 =
dR4

dt
=

(
2

3
GM ′′

)1/3

t−1/3 =
2

3

R4

t
, (20)
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where t is the time from the singularity. Today, the 4-radius R4 is about 14 billion
light-years. Due to the faster expansion in the past, the age of the expanding space
is about 9.3 billion present years.

All gravitationally bound local systems, as well as the wavelength of electromag-
netic radiation propagating in space, expand in direct proportion to the expansion,
Fig. 6. Atoms and material objects do not expand. The distance 2.8 cm of the
measured 3.8 cm annual increase of the Earth to Moon distance comes from the
expansion of space and only 1 cm from tidal interactions. Earth and Mars have been
closer to the Sun in their infancy, which offers an obvious solution to the early faint
Sun paradox.

Figure 6: In DU, all gravitationally bound local systems like galaxies and planetary
systems expand in direct proportion to the expansion of space.

Cosmological distances
The linkage of the velocity of light in space to the expansion velocity of space in
the fourth dimension means, e.g., that the optical distance in space is equal to
the increase of the 4-radius during the light traveling time from the object. Such
a situation allows a simple, closed-form expression for the optical distance versus
redshift

D = R0
z

1 + z
, (21)

where R0 is the 4-radius of space at the time of the observation, Fig. 7.
The optical distance applies to the angular size distance and when corrected with

the Doppler dilution, to the luminosity distance. In DU, luminosity distance applies
directly to the observed bolometric magnitudes (without reduction to the emitter’s
rest frame by the K-correction like in SC) and produces precise predictions, e.g.,
to Ia supernovae magnitudes without hypothetical dark energy. In DU, there is no
basis for the reciprocity [2] of Standard Cosmology.

The spherical geometry, the linkage of the velocity of light to the expansion
velocity, and the linkage of the size of quasars and galaxies to the expansion of space
result in the Euclidean appearance of galactic space, supported by observations on
galaxies and quasars [3], Fig. 8.
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Figure 7: Lightpath in expanding space. The optical distance is the integrated
tangential component of the lightpath. The radial direction in the picture is the
fourth dimension showing the development of the expansion.

Magnitude of standard candle
DU produces a precise prediction for the magnitude of standard candles without
mass density, dark energy, or any other adjustable parameters

mDU = M + 5 log

(
R4

10pc

)
+ 5 log (z)− 2.5 log (1 + z) . (22)

The DU prediction applies to bolometric magnitudes excluding the “conversion to
emitters rest frame” applied in standard cosmology via the K-correction. K-correc-
tion is used to compensate for losses due to atmospheric attenuation and spectral
mismatch of filters or photographic plates, which are technical corrections. Also,
K-correction converts the observed magnitudes of the objects into their respec-
tive rest frames, which, in SC, means an extra (1 + z)2 reduction to the observed
power density. The resulting reduction of power density corresponds to 5 log(1 + z)
correction to the observed magnitudes. The inclusion of the redshift effect in the
K-correction was first introduced by Hubble and Tolman in 1935, see [4] and is still
the praxis “as the conversion to emitter’s rest frame” in Standard Cosmology [5].

The magnitude prediction in standard cosmology is based on power loss pro-
portional to the comoving distance squared and the effects of redshift by the factor
(1+z) due to the Doppler effect and another (1 + z) due to dilution based on Planck’s
equation. Physically, the Planck equation describes energy conversion at the emis-
sion [6], which means that the energy carried by a cycle of radiation does not change
when the wavelength is increased but is diluted as observed via the Doppler effect.
In DU, the magnitude prediction applies to bolometric magnitudes. It is based on
the optical distance (21) and Doppler dilution, which together result in a 5 log(1+z)
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Figure 8: Angular size of galaxies (open circles) and quasars (filled circles). The
data points fall well between the Euclidean DU prediction lines. The SC-0 and
SC-1 curves showing increasing angular sizes for z higher than 1 are the Standard
Cosmology predictions without and with dark energy, respectively.

difference 1 compared to the SC prediction that applies to magnitudes “converted to
emitter’s rest frame” by the factor 5 log (1 + z) in the K-correction.

Fig. 9 (a) shows the K -corrected observations (dots) of Ia supernovae by Riess
et al. [7], and the DU prediction (22) (solid line) corrected by factor 5 log (1 + z)
to correspond to the K-corrected magnitudes. Fig. 9 (b) shows the K-corrections
applied by Riess et.al. to the observed magnitudes.

An ideal bolometric detector is a wideband detector with flat spectral response.
Detection systems, based on multi-bandpass filters, produce closest to bolometric
magnitudes by matching each filter to the redshift of the object observed, or by
following the envelope curve obtained from the minimum magnitude readings of
each filter channel over the whole redshift range. Such an analysis, based on observed
magnitudes in bandpass filters B, V, R, I, Z, J by Tonry et al. [8], is shown in Fig. 10.
The envelope curve shows a complete match to the DU prediction (22) for bolometric
magnitudes. The SC prediction (dashed curve) deviates from the envelope curve by
factor 5 log (1 + z).

1In the redshift range 0. . . 2, compared to DU optical distance, the comoving distance in SC is
higher by the factor ≈

√
1 + z, resulting in extra attenuation by the factor (1 + z). Another (1 + z)

difference comes from the application of both Doppler and Planck dilutions in SC. DU prediction
applies to bolometric magnitudes, SC prediction to bolometric magnitudes corrected with the factor
5 log (1 + z) included in the K-correction as “the conversion to emitter’s rest frame”.
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Figure 9: (a) Distance modulus µ = m − M , vs. redshift for Riess et al. “high-
confidence” dataset and the data from the HST14. The SC prediction is shown
by the dashed curve. The DU prediction (solid curve) is based on equation (22)
corrected with 5 log (1 + z) to correspond the data points converted to emitter’s rest
frame. (b) Average KB,X -corrections (black squares) collected from the KB,X data
in Table 2 used by Riess for the K-corrected distance modulus data shown in (a).
The solid curve gives the 5 log (1 + z) correction “converting observations to emitter’s
rest frame”.

Supernova light-curve broadening
The duration of distant supernova explosions is observed as being proportional to the
redshift as Tz = T0 (1 + z) [9]. In standard cosmology, the broadening is referred to
as cosmological time dilation. Supernova explosions are considered standard candles
which means that we can assume that the duration of an explosion corresponds to
a fixed number of cycles measured with an atomic clock at the time of the event.
The ticking frequency of atomic clocks is directly proportional to the velocity of
light, which decreases with the expansion of space. Light redshifted by z has been
emitted when the velocity of light was cz = c0

√
1 + z, and the ticking rate of clocks

fz = f0

√
1 + z, respectively. It means that the duration of an explosion was dtz =

dt0
/√

1 + z compared to the duration of a similar explosion at z ≈ 0. The expansion
of space during an explosion is

dRz = czdtz = c0

√
1 + z · dt0

/√
1 + z = c0dt0 (23)

which means that the expansion of space during an explosion is independent of the
redshift. Expansion dRz at redshift z corresponds to expansion dR0(z) = dRz (1 + z)
at the time of the observation, and the corresponding observed time, Fig. 11,

dt0(z) = dR0(z)

/
c0 = c0dt0/c0 = dt0 (1 + z) . (24)
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Figure 10: Observed magnitudes in bandpass filters B, V, R, I, Z, J by Tonry et al.
The data is collected from Table 7 in [8] (dotted curves). The envelope curve shows
the bolometric magnitude with a complete match to the DU prediction (22) (solid
curve). The SC prediction (dashed curve) deviates from the envelope curve by the
factor 5 log (1 + z).

Figure 11: The duration of a supernova explosion has been shorter in the past, but
it is observed lengthened.

Days in a year
Perhaps the most convincing cosmological support for the linkage of planetary sys-
tems to the expansion of space comes from paleo-anthropological data available back
to almost 1000 million years in the past. Fossil layers preserve both the daily and an-
nual variations, thus giving the development of the number of days in a year [10], [11].

According to the standard cosmology model, the orbital radius of the Earth is
constant, which means that the reduction in the number of days in a year comes only
from the tidal interaction which increases the length of a day via reduced rotation
speed of the Earth. In the DU framework, the orbital radius and the length of
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a year increase with the expansion, which compensates a part of the tidal effect on
the number of days in a year. The tidal effect on the lengthening of a day is about
2.5 ms/100y [12]. A change of 2.5 ms/100y is too fast when compared to the data from
coral fossils. When corrected with the increase in the length of a year by 0.6 ms/100y
due to the expansion of space, we end up with the lengthening 1.9 ms/100y which
gives a perfect match to the coral fossil data, Fig. 12. The 0.6 ms/100y correction
due to the expansion is based on the expansion corresponding to Hubble constant
71 (km/s)/Mpc.

Figure 12: The development of the length of a year in the number of days. Black
squares are data points from [10], [11]. The DU prediction combines the effects of
tides and the change in the length of a year due to the expansion of the Solar system.

Further observational evidence on the development of the Earth’s rotation is
available from ancient Babylonian and Chinese eclipse observations extending almost
3000 years back [13]. The average lengthening of a day calculated from the eclipse
observations is 1.8 ms/100y which is about 0.7 ms/100y less than the estimated effect
of tidal friction. Adding the effect of the lengthening of a year, 0.6 ms/100y, we end
up to 1.9 ms/100y, which is essentially the same as the result from coral fossils.

The length of a day has been measured with atomic clocks since 1955. An an-
nounced result for the lengthening by NASA is 1.5 ms/100y. When the result is
corrected with the change in the clock frequency, 0.3 ms/100y, we get 1.8 ms/100y,
which is in a good agreement with the solar eclipse and coral fossil data, Fig. 13.

The faint young Sun paradox
At the time of the early development of the planets about 4 billion years ago, solar
insolation is estimated to be about 25% fainter than it is today [14]. Based on geolog-
ical observations, the temperature of oceans on the Earth has been about 30–40◦C.
Also, there is evidence of liquid water on Mars at that time. According to DU, Earth
and Mars have been about 30% closer to the Sun than they are today. Combining
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Figure 13: Lengthening of a day obtained from solar eclipses and coral fossil data
is 1.8 ms/100/y and 1.9 ms/100y, respectively (solid lines in (a) and (b)). Atomic
clock measurement for the lengthening of a day is 1.5 ms/100y if assumed that the
frequency of the clock is unchanged (dashed line in (a)). In the DU framework, the
frequency of an atomic clock has been higher in the past. The corrected lengthening
of a day is 1.8 ms/100y, consistent with the solar eclipse and coral fossil results
(dashed line in (b)). According to the standard model, the lengthening of the day is
due to tidal interactions, which give about 2.5 ms/100y prediction to the lengthening
of a day (dashed line in (a)). In DU, the lengthening of a year shall be taken into
account, which together with the tidal effects results in the 1.9 ms/100y lengthening
of the day (dashed line in (b)).

that with the fainter luminosity of the Sun, 30–40◦C ocean temperature on the Earth,
and liquid water on Mars are well in line with the DU prediction [15], Fig. 14.

Distances to the moon and planets
The distance of the Moon has been monitored in the Lunar Laser Ranging program
since the 1970s [16]. In the DU framework, 2.8 cm of the measured 3.8 cm annual
increase of the Earth to Moon distance comes from the expansion of space and only
1 cm from the tidal interactions.

Reported analyses of transponder measurements of planetary distances apply an
“Einstein effect” to eliminate the expansion shown by the direct transmission time
data [17]. The “Einstein effect” is justified as a relativistic correction for matching
the timescales in measurements at different epochs. In the DU framework, there is
no basis for time-scale corrections; in the transponder measurement, the number of
clock cycles is directly proportional to the distance just as applied in the case of
Laser Ranging in the Earth to Moon distance monitoring.
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Figure 14: The development of the habitable zone in the expanding solar system.
The expansion overcompensates the fainter solar luminosity in the past; the early
temperatures on the planets have been higher than they are today [15]

Orbital decay
In the DU framework, the decay of the period of an elliptic orbit can be solved as
a consequence of the periastron rotation and the related rotation of the orbital an-
gular momentum in the fourth dimension, Fig. 15(a). Interestingly, the prediction
derived from the rotation of the 4D orbital angular momentum gives essentially the
same prediction as the GR prediction based on the change of the quadrupole mo-
ment [18], [19]. The only difference is that DU predicts orbital decay for eccentric
orbits only, GR predicts decay for circular orbits, too, Fig. 15 (b). To the author’s
knowledge, all observations on orbital decay are related to orbits with non-zero ec-
centricity.

The possible energy radiation (gravitational radiation) by the rotating 4D angular
momentum in the DU has not been analyzed.

dP

dt (DU)
≈120 · G

5/3

c5

(
P

2π

)−5/3
(

2 ·
√

1 + e0δ −
√

1− e0δ

(1− e2)2

)
· mpmc

(mp +mc)
2 (mp +mc)

5/3

(25)

dP

dt (GR)
≈123 · G

5/3

c5

(
P

2π

)−5/3
(

1 + (73/24) e2 + (37/96) e4

(1− e2)7/2

)
· mpmc

(mp +mc)
2 (mp +mc)

5/3

(26)

5. Philosophical considerations

The essence of mass
Breaking down Planck’s constant into its constituents opens up the essence of mass
as the wavelike “substance” for the expression of energy. Mass is not a form of energy,
but it expresses the energy related to motion and potentiality. In the DU framework,

81



Figure 15: (a) In the DU framework the orbital decay of binary stars is calculated
from the energy related to the rotation of orbital angular momentum due to the
periastron advance. (b) The eccentricity factor of the decay of binary star orbit
period in equations (25) for DU and (26) for GR, respectively. At the eccentricity
e = 0.616 of the PSR 1913+16 orbit, the eccentricity factor of the GR and DU
for the orbit decay are essentially the same. According to the DU prediction, the
eccentricity factor goes to zero at zero eccentricity.

mass is conserved also in annihilation; the mass equivalence of the emitted photons is
equal to the rest mass of annihilated particles. The total mass in space is the primary
conservable. The contraction of space builds up the excitation of the complementary
energies of motion and gravitation. The anti-energy of the rest energy of a localized
mass particle is the negative gravitational energy arising from all other mass in space.

Inertia and Mach’s principle
In the DU framework, inertial work is the work done against the global gravitational
energy via the interaction in the fourth dimension, which means a quantitative expla-
nation of Mach’s principle. Inertia is not a property of mass; in the DU framework,
the “relativistic mass increase” ∆mc introduced in the SR framework is the mass
contribution by the accelerating system to the buildup of kinetic energy. In the com-
plex quantity presentation, the real part of kinetic energy increases the momentum
observed in space, and the imaginary part of kinetic energy reduces the global grav-
itational energy and the rest energy of the moving object, which is observed as the
reduced ticking frequency of atomic clocks in motion.

Any motion in space is central motion relative to the barycenter of space in the
center of the 4D ball defining space. Inertial work can be understood as the work
that the central force created by motion in space does against the global gravitational
force in the fourth dimension. Electromagnetic radiation propagating at the velocity
of light in space moves like in a satellite orbit around the barycenter of whole space;
radiation is weightless but not massless.
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Occam’s razor
DU omits all central postulates of the relativity theory and standard cosmology like
the relativity principle, Lorentz covariance, equivalence principle, the constancy of
the velocity of light, dark energy, an instant of the Big Bang, inflation hypothesis, and
the space-time concept and replaces them with the assumption of zero-energy balance
in spherically closed space. DU gives at least as precise predictions as SR/GR/SC
but uses fewer postulates and more straightforward mathematics [20], [21]. Most
importantly, DU uses time and distance as universal coordinate quantities essential
for human comprehension and offers a framework for a unified framework for physics
from cosmology to quantum phenomena.

Aristotle’s entelecheia and the linkage of local to the whole
In the spirit of Aristotle’s entelecheia, the primary energy buildup is described as the
“actualization of potentiality”, the conversion of gravitational energy into the energy
of motion – and follows the same, as the zero-energy principle, in all interactions in
space. Any state of motion in space has its history that links it, through the system
of nested energy frames, to the state of rest in hypothetical homogenous space. In
the kinematic analysis of SR, a velocity in space is related to an observer, but in the
dynamic analysis of DU, a state of motion is related to the state where the energy
building up the kinetic energy was released. There are no independent objects in
space, any local object is linked to the rest of space; the rest energy of any energy
object is balanced by the global gravitational energy arising from space as a whole.
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Abstract: When a relativistic compact object (RCO), like a neutron star,
is modeled, it is prescribed that its matter must be distributed from the outer
surface down to the center, i.e., only the normalized solutions of the field
equations are allowed to be used. The arguments to obey this demand are
crucially based on the identification of the radial component of metric tensor
(its special form) with the mass of RCO. However, this identification of the
tensor component (its value depends on a choice of coordinate frame) with the
mass, which is a scalar quantity (its value does not depend on the used frame
for a static RCO), must never be done. Constructing a model of spherically
symmetric, super-massive RCO, when the demand of the normalization is
abolished, we demonstrate some important consequences of the new approach.
Namely, there are stable-equilibrium RCOs with outer radius above the event
horizon, the RCO’s mass can be several orders of magnitude larger than the
observed mass-equivalent of the tensor component, the object in center of
a galaxy and its dark-matter halo can be modeled as a single whole, within
the same numerical integration of field equations, etc. A way how to include
the dark matter into the RCO modeling is also outlined.

Keywords: general relativity, relativistic compact object, galactic halo, dark
matter

PACS: 04.90.+e, 04.20.Cv, 04.40Dg, 98.62.-g, 95.35.+d

1. Introduction

It is well-known that the neutron stars are the objects significantly curving the
spacetime, therefore the general theory of relativity (GR, hereafter) has to be used in
a creation of their models. In sixties of the 20th century, some researchers (e.g. [8],
[18], [7], [19]) tried to construct also the models of the super-massive (SM, hereafter)
objects, detected in the centers of galaxies and quasars, on the basis of GR. In
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this paper, these objects, significantly curving the spacetime, are referred to as the
relativistic compact objects (RCOs, hereafter). We are going, here, to deal only with
the RCOs, which are measured to be spherically symmetric by an observer in their
centers.

When a model of a realistic RCO has been constructed, it has been demanded
that only the normalized solution of the Einstein field equations (EFEs) could be
used. In other words, it has been demanded that the matter of the RCO had to be
distributed from the outer physical surface down to its center; it had to be a fulfilled-
sphere object. We found that this demand has a character of a postulate, which we
name “normalization postulate” and which can be abolished. Actually, there is no
reason why the RCO has always to acquire the form of the fulfilled sphere. The
arguments for a necessity of such configuration are wrong, because they are based
on the following false identity.

Oppenheimer and Volkoff [13] in their modeling of a spherically symmetric neu-
tron star re-wrote grr component of metric tensor with the help of metric function u:

u =
1

2
r
(
1− e−λ

)
, (1)

where grr = −eλ. If function u is multiplied with the square of the speed of light, c,
and divided with the Newton gravitational constant, G, we obtain quantity in unit
of mass,

U =
c2

G
u, (2)

which is, hereafter, referred to as “metric mass-equivalent”. Notice, since u is the
re-written component of grr, it must also be the tensor quantity and U must be the
tensor quantity as well. Although the unit of this quantity is the unit of mass, the
metric mass-equivalent must not be represented as any mass.

The mass of RCO, M , is the scalar quantity. It is the integral of energy density, E,
through the RCO’s volume, ranging from an inner radius Rin to outer radius Rout,
divided by the square of the light speed (in accord to the well-known Einstein’s
formula that energy is the product of mass and c2). Specifically,

M =
4π

c2

∫ Rout

Rin

Er2 dr. (3)

The normalization postulate requires Rin = 0, but if it is abolished, then there may
be considered Rin > 0. The relation between U and M is given and discussed in
Section 2.2.

In our previous paper [11], we showed that there can occur M > 0 and, at the
same time, U < 0 in a distance r inside a RCO. The same quantity cannot be positive,
when calculated in one way, and at the same time negative when calculated in other
way, regardless a realistic or only a theoretical model of RCO was constructed.

If one numerically integrates the EFEs in course to model a RCO, whereby the
integration is started in a finite RCO-centric distance and performed in two stages,
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stepping outward and stepping inward, there appears that not only the outward, but
also the inward stepped integration reaches a finite RCO-centric distance where the
pressure and energy density are vanished. This fact means that RCO is bordered not
only with an outer, but also with an inner physical surface. Below the inner surface,
there is a vacuum void. Besides our earlier papers [9, 10, 11], the models of RCOs in
the form of hollow sphere, with the inner physical surface, have been published by
Ni [12] and deLyra et al. [4], [5].

We would like to emphasize that the inner surface occurs due to the normal,
attractive, GR gravity. No exotic assumption is needed to be adopted. The example
of this gravity is the gravity acting on an astronaut on the Lunar surface, when
the astronaut stays on the surface between the centers of Earth and Moon (i.e., the
Earth is in his zenith) and we describe his gravitational acceleration in the coordi-
nate frame with the origin identical with the center of the Earth. The astronaut is
accelerated away from the Earth, i.e. away from the origin of the coordinate frame,
but this outward oriented (outward in respect to the coordinate origin) gravitational
acceleration is not caused by any repulsion of the Earth. The outward oriented
acceleration occurs simply due to the fact that the dominant matter acting on the
astronaut, matter of the Moon, is situated beyond the astronaut from the point of
view of observer in the center of Earth.

The same situation exists deeply inside any RCO. A test particle situated close
to the inner RCO’ surface or in the central void of RCO is attracted away from the
void center by the dominant matter, which is distributed in a volume beyond the
particle from the point of view of an observer in the center.

One could, perhaps, argue with the spherical symmetry of RCO. In the Euclidean
space of the Newtonian physics, an asymmetry leading to the dominant matter be-
yond the test particle from the point of view of observer in the center actually does
not exist. However, the concept of the spherical symmetry in the GR is more com-
plicated. A distribution of matter, e.g. a spherical shell, which is measured as
spherically symmetric by an observer in the center (of the shell), is not, generally,
measured as spherically symmetric by an observer located aside the center. The
asymmetry leading to the outward-from-center oriented gravitational attraction oc-
curs in the relativistic object. The mechanism of the outward oriented gravitational
attraction was more explained in our previous paper [11].

In this contribution, we present a model of SM RCO constructed when the nor-
malization postulate is not valid. We discuss some cosmological consequences of such
a model. One section (Section 4) is devoted to a discussion about an inclusion of the
dark matter into the RCO modeling.
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2. Modeling an energetic SM RCO

2.1. Fundamental equations

We consider a spherically symmetric object, therefore we use the EFEs simplified
for the spherical symmetry. These equations are [15]

κP =e−λ
(

1

r

dν

dr
+

1

r2

)
− 1

r2
, (4)

κP =e−λ

[
1

2

d2ν

dr2
− 1

4

dλ

dr

dν

dr
+

1

4

(
dν

dr

)2

+
1

2r

dν

dr
− 1

2r

dλ

dr

]
, (5)

κE =e−λ
(

1

r

dλ

dr
− 1

r2

)
+

1

r2
, (6)

where κ = 8πG/c4 is the Einstein gravitational constant (G is the gravitational
constant in the Newton law and c is the speed of light in a vacuum), P is the
pressure, E is the energy density, r is the distance from the center of the object,
and λ = λ(r), ν = ν(r) are the auxiliary metric functions. It is valid grr = −eλ and
gtt = eν ; grr and gtt are the components of the metric tensor.

From the EFEs, the radial component of the gradient of pressure can be given as

dP

dr
= −E + P

2

dν

dr
. (7)

The EFEs (4)−(6) have often been re-written with the help of metric function u (see
relation (1)). Using this function, the EFEs can be given in form

du

dr
=

1

2
κEr2, (8)

dν

dr
=

2

r2 − 2ru

(
1

2
κPr3 + u

)
, (9)

dP

dr
=− E + P

r2 − 2ru

(
1

2
κPr3 + u

)
, (10)

which is appropriate for the numerical integration. (Or, the last equation can be re-
written for the direct integration of material density ρ, when its derivative in respect
to r is calculated taking into account the validity of dP/dr = (dP/dρ)(dρ/dr), see
relations (22) and (23) in Section 2.3.)

We note that equations (8)−(10) are the tensor equations. Let us deal with the
last one to demonstrate the tensor character. It is the equation for the diagonal
rr-component. In the case of spherical symmetry, we can regard the spatial diagonal
components, rr, ϑϑ, and ϕϕ, as the components of a vector and establish unit
vector ~ro in the radial direction (corresponding to rr component of the metric tensor).
The left-hand side of Eq. (10) is the radial component of the gradient of pressure in
fact. To obtain a vector component also on the right-hand side of this equation, we
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write variable r and quantity u in their ordinary, i.e. vectorial, forms ~r = r~ro and
~u = u~ro. Eq. (10) can, then, be re-written to

gradP |r = − E + P

(r~ro)2 − 2(u~ro)(r~ro)

[
1

2
κP (r~ro)

2(r~ro) + u~ro

]
(11)

or (using ~ro.~ro = 1)

gradP |r = − E + P

r2 − 2ur

(
1

2
κPr3~ro + u~ro

)
. (12)

Besides other arguments, also this equation implies that function u, exactly u~ro = ~u,
cannot be regarded as a scalar function; therefore, c2u/G cannot be identified with
any mass.

2.2. On the concept of mass in the unlimited GR

Eq. (8) can be used to calculate integral (3), i.e. the mass of the RCO. From (8),
we can express Er2 = 2(du/dr)/κ and supply this into (3). Then, the integral can
be easily calculated and mass M can be given as

M =
8π

c2κ
(uout − uin) =

c2

G
uout −

c2

G
uin = Uout − Uin, (13)

where uin = u(Rin), uout = u(Rout), Uin = U(Rin), and Uout = U(Rout). If the
coordinate frame with the origin in the center of the RCO is used, then it is always
true that Uin < 0 and Uout > 0. Therefore, mass can be given as

M = |Uout|+ |Uin|. (14)

It implies that the mass is always positive.
Beside the mass, a RCO can be further characterized with the rest mass, Mo.

It is the sum of the rest masses of constituting particles. The rest mass of whole
RCO is

Mo = 4πm̄

∫ Rout

Rin

nr2eλ/2 dr, (15)

where m̄ is the mean mass of the particles, which equals m̄ = µbma, and n is the
number density of particles. We denoted the molecular weight of the gas by µb and
atomic mass unit by ma. Integral (15) gives the number of the particles in the proper

volume of RCO, V = 4π
∫ Rout

Rin
r2eλ/2 dr. Since the number density, n, is related to

the material density, ρ, as n = ρ/(µbma), the rest mass can also be given as

Mo = 4π

∫ Rout

Rin

ρr2eλ/2 dr = 4π

∫ Rout

Rin

ρr2√
1− 2u

r

dr. (16)
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Further, one could show that Rin → 0 and Uin → 0 in the limit of weak field.
Then, M → Uout, numerically. It means that the normalization postulate is redun-
dant, in fact. The GR itself implies that a non-rotating, gaseous object tends to
acquire the form of fulfilled sphere, with the mass approaching the metric mass-
equivalent, in the limit of weak field. We need not to prescribe the fulfilled-sphere
solution in advance.

2.3. Equation of state; polytrope

It appears that even the maximum density inside a RCO is relatively low and,
thus, the gas constituting a SM RCO is, probably, similar to a common stellar
plasma. Hence, in modeling of a SM RCO, we use the equation of state (EoS) in
form of a combination of polytrope and EoS for radiation (E = 3P ). It means that
the pressure is given by [16]

P = KPρ
γ +

1

3
aT 4, (17)

and energy density
E = NKPρ

γ + c2ρ+ aT 4, (18)

where a is the radiation constant, T is the temperature of plasma, N is the polytropic
index, γ = 1 + 1/N , and constant KP equals

KP =
kBTmax

µbmaρ
1/N
max

. (19)

In the last relation, kB is the Boltzmann constant, ρmax and Tmax are the maximum
density and maximum temperature inside the RCO (these constants are more spec-
ified below). For the sake of simplicity, we consider the same composition of plasma
as in the zero-age, main sequence stars throughout the RCO volume. Hence, the
weight abundances of hydrogen and helium are equal to XH = 0.73 and XHe = 0.25,
respectively. The abundance of heavy chemical elements is Z = 0.02.

Since we model a RCO assuming the normalization postulate abolished, the max-
imum pressure, Pmax, and maximum energy density, Emax, occur in a finite RCO-
centric distance, ro. The local extreme of the pressure is given by equality dP/dr = 0
and this is valid, according to relation (10), if κPmaxr

3
o/2 + uo = 0. From the latter,

uo = u(ro) can be expressed as

uo = −1

2
κPmaxr

3
o. (20)

When dP/dr = 0, then also dν/dr = 0 according to relation (7). Since the gravita-
tional acceleration is proportional to dν/dr, it is zero in ro. It means that distance ro
is the distance of zero net gravity.

It is reasonable to start each stage of the numerical integration of EFEs just
from the distance ro, where the maximum material density, ρmax, and maximum
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temperature, Tmax, of RCO are assumed. In the case of polytrope, temperature T
can be given with the help of density ρ as

T = Tmax

(
ρ

ρmax

)1/N

. (21)

The common formula for the calculation of pressure of a gas is P = kBρT/(µbma).
Hence, for the maximum pressure of gas, we have Pmax = kBρmaxTmax/(µbma) and,
at the same time (see the first term of relation (17)), Pmax = KPρ

γ
max. Comparing

these two relations, we can express constant KP in form (19).
If we now establish the auxiliary variable ξ equal to

ξ =
ρ

ρmax

, (22)

the EFEs for the numerical integration can be given in form (8), (9) and

dξ

dr
=

− E+P
r2−2ru

(
1
2
κPr3 + u

)
γKPρ

γ
maxξ1/N + 4

3N
Krξ(4/N)−1

, (23)

where we supply

P =KP ξ
γ +

1

3
Krξ

4/N , (24)

E =NKP ξ
γ +Krξ

4/N +Kcξ, (25)

for P and E. We denoted Kr = aT 4
max and Kc = c2ρmax.

2.4. Calibration of gtt component of metric tensor

In the inner and outer radii of RCO, the metrics of the RCO’s interior (IM)
should be smoothly tailored with an appropriate vacuum metrics; according to
the Birkhoff [1] theorem, it should be tailored with the outer Schwarzschild met-
rics (OSM). The smooth tailoring means that all components of the metric tensor
of IM and OSM, as well as their derivatives in respect to r, should equal each other,
correspondingly. For a spherically symmetric object, the transversal components, gϑϑ
and gϕϕ, are identical in both the metrics, therefore, the demand of smooth tailoring
is apriori obeyed. Component grr and its derivative dgrr/dr also obey the demand
due to the intrinsic consistency of GR.

However, the EFEs do not contain gtt component itself, only the derivative of
auxiliary function ν, therefore this component is not completely determined by the
EFEs and its tailoring deserves an attention.

Since only the derivative dν/dr of function ν is present in the EFEs, the be-
havior of ν inside the RCO’s body is the same for the initial values of, e.g., νo,1
and νo,2, except of a constant difference ∆ν1,2. Thus, we can suppose whatever ini-
tial value νo,1 and perform the integration. In the outer radius of RCO, integration
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yields the value ν1(Rout). This value has to be smoothly tailored to value νOSM of
the OSM in Rout, i.e., to value νOSM(Rout) = ln(1− 2uout/Rout). Since the numerical
integration also yields values uout and Rout, νOSM(Rout) can be calculated and, then,
difference ∆ν1,2 = ν1(Rout)− νOSM(Rout) is also known. Therefore, we can calculate
the appropriate initial value of ν in ro:

νo,2 = νo,1 − ν1(Rout) + ln

(
1− 2uout

Rout

)
. (26)

Using this initial value, we repeat the numerical integration. The repetition yields
the behavior of function ν(r), which can be smoothly tailored to the OSM in Rout.

The general form of grr and gtt components of metric tensor in the OSM is

gtt = −Kν

grr
= Kν

(
1− 2u

r

)
, (27)

where Kν and u are the constants. There is the convention to put Kν = 1 for
the OSM in the vacuum above the outer surface of RCO, i.e. in the region r ≥ Rout.
The convention was established to achieve the convergence of the GR to the Newto-
nian physics in the limit of weak field. (This convention is not, however, necessary.
We could choose whatever value of constant Kν and establish the gravitational con-
stant G̃. Then, the Newtonian gravitational acceleration would be proportional
to KνG̃. In the experiments to determine the effective gravitational constant, we
always measure the effective gravitational constant, G, which is just the product
of Kν and G̃, i.e., G = KνG̃. If we did not demand Kν to equal unity, we could
anyway denote G = KνG̃ and achieve the standard form of the acceleration in this
way, i.e., via establishing the appropriate denotation.)

The OSM can smoothly be tailored to the IM also in the inner radius Rin. Since
we already chose the initial value of ν, it cannot be chosen again to achieve Kν = 1
in r = Rin. Constant Kν,in in this RCO-centric distance is

Kν,in =
1− 2uout

Rout

1− 2uin
Rin

. (28)

The effective gravitational constant in the inner vacuum void, i.e. in the region
r ≤ Rin, is Gin = Kν,inG. A modeling shows that Kν,in 6= 1, therefore Gin 6= G. It
implies that the strong, relativistic, accumulation of matter changes the value of the
gravitational constant.

3. Example of a very energetic RCO

3.1. Basic properties and overall structure

Here, we present a model of SM RCO, which was constructed by performing
the numerical integration of EFEs (8), (9), and (23). The Runge-Kutta integration
algorithm was used. Polytrope index N = 3 was considered. The integration in each
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of two stages started in the zero-gravity distance ro = 1 au. In this distance, we put
ρmax = 1.0 · 105 kg m−3 and Tmax = 5.0 · 1010 K. In the starting distance ro, value ξ
equals unity according to (22) and uo is given by relation (20).
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Figure 1: The behavior of the metric mass-equivalent, U , in the example of SM RCO.
The behavior is described in more detail in Sect. 3.1. Notice the different scales of
the panels.

Since the radiation was included into our considerations (the EoS contained the
term corresponding to the radiation), pressure and energy density did not vanish
exactly at the borders of RCO. Because of this circumstance, the sphere, where the
material density, ρ, dropped to 10−9ρmax, was regarded as the surface. This definition
implies the inner radius Rin = 125.022 km. The outer radius of central condensation
of RCO (CC-RCO, hereafter), where ρ = 10−9ρmax, equals Rcc = 1.44214 au. (The
reason why we established term “CC-RCO” is clarified below.)

To explain better the characteristics obtained from the integration, let us deal,
firstly, with the behavior of metric mass-equivalent U as the function of RCO-centric
distance, r. This behavior can be seen in Fig. 1. In panel (a) of this figure, the
beginning of the U = U(r) curve in Rin can be seen. In Rin, Uin = −6.410 · 1014 M�.

The outer border of the CC-RCO is seen in plot (b). In Rcc, the metric mass-
equivalent equals Uout = 7.248 · 107 M�. This value, which is about seven orders
of magnitude lower than the size of Uin, characterizes the metrics above the outer
surface of the CC-RCO. In this region, the motion of various objects is observed
and Uout is determined (via a reverberation mapping or other method). Here, we
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can see that the mass of CC-RCO, which is the difference Uout − Uin according to
relation (13), is much larger than the metric mass-equivalent in the region above the
outer CC-RCO surface. Specifically, the CC-RCO mass is equal to 6.410 · 1014 M�.
The CC-RCO rest mass, Mo, equals only 9.379 · 105 M�.

We note that integral (3) can be obtained within the numerical integration. The
mass can also be calculated as Uout − Uin. Both values can be compared and used
to estimate the precision of the numerical integration. In the presented example, we
obtained values 6.410185 ·1014 M� and 6.410186 ·1014 M�, respectively. So, the mass
was determined with the precision of six decimal digits.

In Fig. 1b, one can further notice a constant behavior of the metric mass-
equivalent above the CC-RCO’ surface, up to the distance of ∼200 au. The constancy
implies the OSM. A detailed inspection revealed, that the metrics was not exactly
the OSM, but the approximation with this vacuum metrics was a very good approx-
imation of the actual metrics in the above-mentioned region. The region seems to
be an analogy of the region in the Milky Way, where the S-stars orbit the central
compact object, SgrA∗. (The extent of the region can be larger, up to several thou-
sands of astronomical units according to some speculative models including the dark
matter; see Section 4.)

If one goes on with the integration beyond ∼200 au, the value of the metric
mass-equivalent increases, up to the distance of ∼22 kpc (Fig. 1c). Then the metric
mass-equivalent is again practically constant up to the outer border of the RCO.
This border appears to be in the RCO-centric distance of Rout = 30.854 kpc. Here,
the material density, ρ, abruptly decreases and if the numerical integration went on,
it would imply a negative material density in a larger distance. (It is similar to the
Oppenheimer and Volkoff’s [13] neutron stars. There is an inflex point in the outer
border of star and a further integration beyond this point, if was performed, would
also yield a negative energy density.) In the region r > Rout, the material density is
postulated to be zero. Of course, the total energy density is not exactly zero because
of escaping photons. However, it is negligible and the metrics can, again, be well
approximated with the OSM.

At the outer RCO’s border, the value of the metric mass-equivalent reaches Uout =
8.247 · 1015 M� and mass equals M = 8.888 · 1015 M�. The region in the interior of
the sphere with this radius resembles the dark-matter galactic halo, although, in our
example, it consists exclusively of the baryonic matter. (We considered the EoS of the
common, hydrogen-helium, stellar type of plasma with the EoS for radiation added.)

The model of the RCO in this example was constructed within a single integration
of EFEs, it is a single whole. Formally, we can divide the RCO structure to three
substructures, in three regions: the central condensation (CC-RCO) in the region
between the spheres of radii Rin and Rcc, the region of OSM (OSM-RCO) extending
from the outer CC-RCO surface to the end of constant U behavior, which is in the
distance of about 200 au in our example, and the halo of the RCO (H-RCO) extending
from the outer border of the OSM-RCO to the outer border of whole RCO, i.e., from
about 200 au to 30.854 kpc in our example RCO.
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3.2. Evaluation of the RCO’s stability

Let us now evaluate the stability of the RCO. It was constructed by using the
EFEs for a static case. Such the EFEs provide only a solution for an object in an equi-
librium configuration. However, the object can be in stable or unstable equilibrium.
It acquires the stable-equilibrium configuration if its binding energy, Wo−W [17], is
positive. It means that the rest energy, Wo = Moc

2, is larger than the total energy,
W = Mc2.

Since the radiation is also considered in our example RCO, we correct the con-
dition Wo −W > 0. Namely, if the condition is obeyed, the free energy, W −Wo,
of the RCO is negative. The RCO could become unstable, if the free energy of gas,
Wgas − Wo, would be positive (Wgas is the total energy of gas; it equals Wgas =
W −Wrad, where Wrad is the energy of radiation inside the RCO). If the radiation
energy was transformed to the energy of gas, then the latter could become larger
than Wo and RCO could be unstable. However, the radiation energy, Wrad, cannot
be transformed to Wgas, since this would be a violation of the second law of ther-
modynamics (in a gas, the temperature of gas cannot increase and temperature of
radiation decrease; the radiation must be in an equilibrium with the gas). In the
stability criterion, we therefore replace the total energy, W , with the energy of gas,
and obtain condition

Wo −Wgas > 0. (29)

In our example, Wgas = 1.217 ·1063 J (mass equivalent Wgas/c
2 = 6.806 ·1015 M�) and

Wo = 1.367 · 1063 J (mass equivalent equals 7.649 · 1015 M�), therefore the condition
of stability is obeyed.

In our previous paper [11], we found several models of neutron stars which were
not only in a stable configuration, but also in the minimum-energy configuration.
In the current modeling, it is impossible to create a series of models with the same
rest energy and investigate the dependence of the total energy on the zero-gravity
distance, since the rest energy of CC-RCO is not constant. At the considered high
maximum temperature, the nuclear reactions happen. Two photons can transmute
to a pair of particle-antiparticle and vice versa, for example.

It is worth to note that the CC-RCO, when regarded as an autonomous object,
is in an unstable-equilibrium in our example (and, probably, in all models that can
be created). While the energy of gas on our CC-RCO equals 2.426 · 1056 J (mass
equivalent is 1.357 · 109 M�), the rest energy is equal to only 1.677 · 1053 J (mass
equivalent equals 9.379 · 105 M�). Hence, the CC-RCO is obviously kept as a stable
object by an interaction with the other parts of RCO.

3.3. An estimate of the RCO’s luminosity

Further, let us estimate the bolometric luminosity of the RCO in our example. We
assume that the RCO-constituting radiation fluid can be approximately regarded as
a grey stellar photosphere. Then, we can calculate the opacity by using the relations,
which are approximation of tabulated opacity values [6],
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χe = 0.02(1 +X), (30)

χff = 1.0 · 1019 ρ

µeµi

X + Y

AHe
T−3.5, (31)

χbf = 4.0 · 1021Z(1 +X)ρT−3.5, (32)

where χe, χff , and χbf are the free-electrons, free-free transitions, and bound-free
transitions opacities, respectively, X, Y , and Z are the weight abundances of hy-
drogen, helium, and metals, respectively, µe is the mean molecular weight per free
electron, µi is the total mean molecular weight of ions, and AHe = 4 is the atomic
mass of helium. All quantities are in the SI units. The total opacity, χ, is the sum
of the above given components, i.e., χ = χe + χff + χbf .

At the outer border of the RCO, in about 30 kpc, the temperature is only few
kelvins and the density of the gas is also extremely low. (The identification of the
gas with the stellar plasma fails in this region, because the gas is obviously neutral;
we ignored this fact since this region is small, with a negligible energy content, not
significantly influencing the other parts of RCO, and in sake of simplicity.) Therefore,
the above-mentioned relations can scarcely be extrapolated to such the extreme
conditions. However, one can draw some, at least qualitative, conclusion estimating
the appropriate parameters of layer, in which the temperature is, say, 5000 K. We
chose such a geometrical thickness of the layer, h, that its optical thickness is τ = 1.
Then, we found that h ∼ 8.8 pc and luminosity equals ∼1.1 · 1047 W. The RCO
could, constantly, emit so intensive radiation only during about 0.0024 current age
of the universe. This fact in a combination with the tremendous estimated luminosity
implies that the galactic halos must consist of the dark matter.

The optical thickness, τ , in the spherically symmetric curved spacetime was cal-
culated as

τ = −
∫ r5−h

r5

χρeλ/2 dr, (33)

since we had to consider the proper element of length, eλ/2dr, in the curved spacetime.
r5 is the radius of the layer with the temperature equal to 5000 K (r5 ∼ 4.9 kpc in
our example).

The outer radius of the CC-RCO equals 1.0078Rg, where Rg is the gravitational
radius calculated as Rg = 2GUout/c

2. (In each step of the integration, we checked if
inequality r > 2u is valid. If the inequality did not hold, the integration would fail.)
Since the outer surface is situated above the event horizon, the CC-RCO can emit
a radiation from its upper layer, photosphere. Let us assume that OSM-RCO and
H-RCO prevailingly consist of the dark matter and, thus, these parts are transparent
for the radiation emitted by the plasma in the photosphere of CC-RCO. Assuming
further that this part mostly consists of baryonic matter, we give a rough, order-of-
magnitude, estimate of geometrical thickness of the photosphere and luminosity of
the CC-RCO. The bolometric luminosity, L, can be calculated as
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L =
16

3
πac

r2

χρ

√
gttT

3dT

dr
. (34)

The square root of gtt component of metric tensor has to occur in this relation because
the frequency of each emitted photon is gravitationally redshifted. It means, the
photon has the frequency

√
gttfs in a large distance (of observer on the Earth), when

the frequency at the source is fs.
The geometrical thickness of the CC-RCO photosphere in our example model was

about 26 km. The luminosity was estimated to be about ∼9.0·1042 W (∼2.4·1016 L�).
If the luminosity was assumed to be constant during the period equal to the current
age of the universe, ≈ 14 Gyr, then the CC-RCO would loose only 0.035 of its initial
total energy during this period. If the phenomenon of quasar was the radiation from
the photosphere of CC-RCO, then the most energetic quasars would have enough
energy to emit the radiation, with the high observed luminosity, during the whole
age of the universe. Yet, they would have spent only a small fraction of their initial
total energy.

The luminosity estimated above is larger than even the maximum luminosity ob-
served at the quasars. (For example, it is about 5900 times larger that the luminosity
of the well-known, bright quasar 3C 273.) Maybe, these astrophysical objects consist
not only of baryonic, but of the dark matter as well. Then their actual bolometric
luminosity would be lower.

4. Note on the inclusion of dark matter into the modeling

At the present, we have no direct evidence that the dark matter (DM) exists.
However, this concept enables to explain some puzzles, as e.g. the rotation curves of
spiral galaxies. In the following, we hypothesize that the DM exists. Based on the
explanations of some effects assumed to occur due to the DM, only few fundamental
properties of the DM have been derived: it is a subject of the gravitational interac-
tion, it does not emit any electromagnetic radiation, and the efficient cross-section in
its collision with the normal, baryonic matter (BM) is extremely small. Despite our
not very good knowledge of the properties of DM, it appears, surprisingly, that we
have a quite a lot of information that we need to create a reasonable model of RCO
consisting of both BM and DM.

Assuming that the DM can constitute a gas, which can be characterized in a sim-
ilar way than a gas consisting of BM, i.e., its pressure, temperature, material density,
and energy density are well defined, then the DM can be included into a modeling
of RCOs. Below, we outline such the modeling.

Since there is no pressure of the DM on the BM and vice versa, each of these
two kinds of matter must balance the gravity in a RCO autonomously. In a RCO
being in an equilibrium configuration, it means that the gradient of pressure of DM,
gradPd, must be the same as the gradient of pressure of BM, gradP . When we
assume a spherically symmetric, non-rotating, RCO, only the radial component of
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the pressure gradient is non-zero. So, we have the equation

dPd
dr

=
dP

dr
. (35)

After the integration of this equation in respect to r, one obtains

Pd = P + Cd, (36)

where Cd is an integration constant.
Completing EFE (4) with the cosmological constant, Λ, we can use this equation

to calculate the difference Pd − P . Since the same gravity is efficient in the case
of DM as BM, i.e., functions λ and dν/dr are the same in the equations for both Pd
and P , the difference is equal to

Pd − P = Λd − Λb. (37)

Symbols Λd and Λb stand for the cosmological constant for the DM and BM, respec-
tively, and the difference of Λd − Λb, equal to our constant Cd in fact, is the actual
cosmological constant. From various measurements we know that this constant, if
non-zero, is very small. Obviously we can put Cd = 0 on the scale of RCO in our
example. Relation (36) then implies Pd = P .

Because of the equality of the pressures, it is reasonable to assume the same
functional dependence of the DM pressure on DM material density as in the case
of BM. Therefore, the DM pressure, Pd, will be given by a polytrope. Specifically,

Pd = Kdρ
γ
d. (38)

In this relation, symbol ρd stands for the DM material density and Kd is a constant
of proportionality. In analogy with constant KP given by relation (19), the constant
Kd can obviously be given as

Kd =
kdTd,max

µdmdρ
1/N
d,max

. (39)

Since we do not know if the Boltzmann constant for the DM is identical to that for
the BM, we assume that it equals kd. The molecular weight and atomic mass unit
for the DM are also unknown; we denoted them by symbols µd and md, respectively.
Symbol Td,max denotes the maximum temperature and ρd,max the maximum density of
the DM. Relation (38) does not contain the radiation term (an analog of term aT 4/3
in the case of BM) because the DM does not emit the electromagnetic radiation,
which causes the radiation pressure.

Obviously, constants kd, µd, and md for the DM are the multiples of cons-
tants kB, µb, and ma for the BM, respectively. When we denote these multiples
by Ck, Cµ, and Cm, respectively, we can write

kd = CkkB, (40)

µd = Cµµb, (41)

md = Cmma. (42)
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Denoting

C3 =
Ck

CµCm
, (43)

the constant Kd can be re-written as

Kd =
CkkBTd,max

CµµbCmmaρ
1/N
d,max

= C3
kBTd,max

µbmaρ
1/N
d,max

. (44)

We see that constants kb, kµ, and km can be merged to a single constant, C3. This
constant can be regarded as a free parameter in the modeling of RCO.

Because of the equality of the DM and BM pressures, the DM material density, ρd,
is related to the BM material density, ρ, as

ρd =

(
KP

Kd

+
aT 4

max

3Kdρ
4/N
max

ρ
3−N
N

) N
N+1

ρ. (45)

This relation can be derived, after an algebraic handling, from the equality of the
right-hand sides of relations (17) and (38). In (17), temperature of BM gas can be
re-written with the help of relation (21). In a special case, when the polytropic index
N = 3, the DM density is

ρd =

(
KP

Kd

+
aT 4

max

3Kdρ
4/3
max

)3/4

ρ. (46)

We see that the DM density is linearly proportional to the BM density, since the
form in the parentheses is constant.

Further, the equality of DM and BM pressures means that also the maximum DM
pressure, Pd,max, must equal the maximum BM pressure, Pmax. In other words, the
right-hand side of relation (17) for ρ = ρmax (again, temperature T can be re-written
with the help of relation (21)) is equal to the right-hand side of relation (38) for
ρd = ρd,max. From this equality, one can find that

ρd,max =
µbma

kBC3Td,max

(
KPρ

γ
max +

1

3
aT 4

max

)
. (47)

Now, only independent parameter is the maximum temperature, Td,max, of the DM.
This parameter can be merged with free parameter C3, i.e., we can put

KT = C3Td,max (48)

and regard constant KT as a single free-parameter input into a numerical integration
to model a RCO.

The description of the thermodynamic state of the DM by the polytrope implies
the energy density of the DM, Ed, in form

Ed = NKdρ
γ
d + c2ρd. (49)
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Again, the radiation term is omitted, because there is no electromagnetic radiation
of the DM.

The absence of the ability of DM to emit an electromagnetic radiation is im-
portant in the cosmological evolution of galactic halos. We know that the electro-
magnetic radiation is the main mechanism of cooling of the macroscopic objects in
the universe. It is well-known that a more massive star, a shorter its active life. If
the galactic halos could emit the electromagnetic radiation, they would likely loose
their internal energy and collapsed within a period much shorter than the age of
the universe. Since these halos consist of DM, prevailingly, they can probably loose
their energy only when produce the gravitational waves (e.g. when galaxies collide),
but this mechanism is much less efficient than the emission of the electromagnetic
radiation. Thus, the galactic DM halos can exist for eons.

Accounting for the DM, the EFEs to model a spherically symmetric RCO can be
given, in an analogy with Eqs. (8), (9), and (10), in the form

du

dr
=

1

2
κ(E + Ed)r

2, (50)

dν

dr
=

2

r2 − 2ru

(
κPr3 + u

)
, (51)

dP

dr
=− E + Ed + 2P

r2 − 2ru

(
κPr3 + u

)
. (52)

The total energy density is the sum E + Ed of the energy densities of both BM
and DM. Term E + Ed + 2P in the nominator of fraction in the right-hand side of
Eq. (52) acts as an inertial mass density and term in the parentheses (which is also
in relation (51)) acts as a gravitational mass density [14]. Since both BM and DM
pressures contribute to both these densities, there appears the sum P + Pd = 2P
(because Pd = P as argued above) instead of single P in the aforementioned relations
as well as further relations for a mixture of BM and DM.

In the zero-gravity distance, ro, the function u can be calculated, in a BM-DM
model of RCO, in analogy with its calculation for a pure BM (see relation (20)) as

uo = −κPr3
o. (53)

Equations (50)–(52) can be used to model a RCO consisting of both BM and DM.
However, a construction of the BM-DM models, their analysis and description of
results exceed the scope of this article. We stop this part of our considerations, here.

5. Instead of conclusion: is there an implication of new cosmology of
quasars and galaxies?

The outlined properties of the very energetic RCO resemble some properties of
quasars and galaxies. On the basis of implied qualitative properties of the example
RCO, it is thus possible to hypothesize that the galaxies and quasars did not form
by an accumulation of dispersed matter, filling in the intergalactic space, during
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a certain period after the Big Bang, but they occurred as the stupendously large
RCOs in a very short time after the Big Bang. Carr et al. [2] and Carr and Kühnel [3]
concluded that the stupendously large primordial black holes with the masses in the
interval ranging from 1012 M� to 1018 M� could occur. These black holes were the
collapsed primordial objects of such the high masses. Assuming in accord to the
indications pointed out in this work, these objects did not collapse below their event
horizon, they can still exist, being evolved meanwhile, and can be identified with the
galaxies and, those with the most energetic central condensations, with the quasars.

Actually, the CC of the SM RCO in the presented example indicates that a quasar
with a comparable energy content could have emitted a radiation with the luminosity
of the brightest quasars during a period comparable to the current age of the universe
and, yet, it has spent only a small fraction of its initial total energy. One should not
be surprised if a clear evidence of dark age is never found and quasars in distances
corresponding to a very young universe (e.g., z = 15 or 20, or even higher values)
will be discovered.

Since there is no event horizon, the CC-RCOs could eject some material into
a neighboring space. If such a CC-RCO ejected only a small fraction of its mass
(energy), there was enough material to form even a giant galaxy.

In the end, we again emphasize that the above-mentioned concepts are the im-
plications of unlimited GR. The revision of the arguments to demand, that only
the normalized solutions of the EFEs can be used in modeling of real objects, is
needed. In astrophysics, we should utilize the whole, unlimited, Einstein’s GR, not
only a limiting case of this theory.
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1. Introduction

HII Galaxies (HIIG) are compact and massive systems experiencing luminous
bursts of star formation generated by the formation of young super clusters (SSCs)
with a high luminosity per unit mass and with properties similar, if not identical, to
Giant HII Regions (GHIIRs). The potential of GHIIRs as distance indicators was
originally realized from the existence of a correlation between the GHIIR diameter
and the luminosity [15], [16] see also [11].

Most HIIG were discovered in objective-prism surveys thanks to their strong
narrow emission lines. Currently, in spectroscopic surveys like Sloan Digital Sky
Survey (SDSS), they are selected by very large equivalent widths in the Balmer
lines. Since the luminosity of HIIG is dominated by the starburst component they
can be observed even at large redshifts becoming interesting standard candles.

In 1981, [17] found a tight correlation between the turbulent emission lines veloc-
ity dispersion and their integrated luminosity: the L− σ relation. This correlation,
valid for HIIG and GHIIRs, links a distance dependent parameter, the integrated Hβ
line luminosity, with a parameter that is independent of distance, the velocity disper-
sion of the ionized gas, therefore defining a redshift independent distance estimator.

The relationship between the integrated Hβ line luminosity and the velocity dis-
persion of the ionized gas of H ii galaxies and giant H ii regions represents an exciting
standard candle. Locally it is used to obtain precise measurements of the Hubble
constant by combining the slope of the relation obtained from nearby (z ≤ 0.2) H ii
galaxies with the zero point determined from GHIIRs belonging to an “anchor sam-
ple” of galaxies for which accurate redshift-independent distance moduli are avail-
able [4], [7], [12].

On the other hand, HIIG are alternative and effective tracers of the Hubble rela-
tion, because they can be observed up to high redshifts z ∼ 3.5, where the distance
modulus is more sensitive to the cosmological parameters and despite the fact that
the scatter of the HIIG distance modulus is larger (by a factor of 2) than that of
high-z SNIa, this demerit is fully compensated by the fact that HIIG are observed
to larger redshifts than SNIa, where the degeneracies for different DE models are
reduced [13].

Indeed, it has been proven that this relation can be used as an alternative cos-
mological tracer with promising results in constraining cosmological parameters and
determining the local value of the Hubble constant in recent years; not only by our
group (cf. [6], [8], [9], [18], [19]) but also by independent groups, cf. [2], [3], [14],
[20], [21].

2. Analysis

We have analyzed a sample of HIIG and GHIIRs containing 217 objects, which
can be split into: the anchor sample (36 GHIIRs in 13 local galaxies with distances
from primary indicators, [7]), the local sample of HIIG (107 with z < 0.16, [5]) and
a high-z sample based on 29 KMOS, 15 MOSFIRE, 6 XShooter and 24 literature
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objects (see [9] for more details). We used these data to make constrain cosmological
parameters and to determine the local value of the Hubble constant by means of the
distance indicator defined by the L− σ relation.

2.1. Determination of the Hubble constant

The Hubble constant is determined as follows: first we fix the slope of the L− σ
relation using the velocity dispersions and luminosities of the HIIG. The slope is
independent of the actual value of H0.

To estimate the Hubble constant we use the slope (α) of the L− σ relation of
the HIIG and new GHIIR data (anchor sample) to calibrate the zero point (Zp) of
the distance indicator as follows

Zp =

∑36
i=1 Wi(logLGHR,i − α× log σGHR,i)∑36

i=1 Wi

, (1)

where LGHR,i is the Hβ luminosity of each GHIIR and σGHR,i is the corresponding
velocity dispersion. The statistical weights Wi are calculated as

W−1
i =

(
0.4343

δLGHR,i

LGHR,i

)2

+
(

0.4343α
δσGHR,i

σGHR,i

)2

+ (δα)2(σGHR,i− < σHIIG >)2, (2)

where < σHIIG > is the average velocity dispersion of the HIIG that define the
slope of the relation. Thus, the calibrated L − σ relation or distance estimator
is: logL(Hβ) = α log σ + Zp. To calculate the Hubble constant we minimize the
function,

χ2(H0) =
N∑
i=1

[Wi(µi − µH0,i)
2 − log(Wi)], (3)

where µi is the logarithmic distance modulus to each HIIG calculated using the
distance indicator and the Hβ flux F(Hβ) as

µi = 2.5[Zp + α× log σi − logFi(Hβ)− log 4π] (4)

and µH0,i is the distance modulus calculated from the redshift using either the linear
relation DL = zc/H0 or the full cosmological prescription with ΩΛ = 0.71.

The best value of H0 is then obtained minimising χ2 with statistical weights
W−1
i = δµ2

i + δµ2
H0,i

calculated as,

W−1
i = 6.25[(δZp)

2 +
(

0.4343
δFi
Fi

)2

+
(

0.4343α
δσi
σi

)2

+(δα)2(σi− < σ >)2]. (5)

2.2. Determination of the Hubble constant: Systematics

Genuine systematic errors are difficult to estimate. However, we include a range of
parameters to quantify at least part of the systematic error component. In particular,
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we explore alternative parametrizations that cannot be easily included in the error
budget, in order to include: the sensitivity to the Hβ photometry, extinction laws,
evolution corrections due to the cluster stellar evolution, the robustness of the slope
by means of bootstrap sample test and the sensitivity of H0 to changes in the sample.

• Two samples: S1 with 107 or S2 with z < 0.1 92 HIIGs;

• Two different sources for the Hβ photometry: [5] (Ch14) or SDSS;

• Two formulations for the luminosity distance for the HIIG: DL = H0/cz (LR)
or full ΛCDM cosmology with ΩΛ = 0.71.

• For all cases we use two different extinction laws: [1] (C00) or [10] (G03).

• We have included in the estimate of the evolution correction the contribution
of an underlying older stellar population and of the differential extinction.

2.3. Cosmological parameters constraints

To calculate the parameters of the L − σ relation in a unified way including
HIIGs and GHIIRs, we define the following likelihood function

L ∝ exp

(
−1

2
χ2
HII

)
, (6)

where

χ2
HII =

∑
n

(µ0(log f, log σ|α, β)− µθ(z|θ))2

ε2
(7)

and where µ0 is the distance modulus calculated from a set of observables as

µ0 = 2.5(α + β log σ − log f − 40.08). (8)

Here α and β are the L − σ relation’s intercept and slope, respectively, log σ is
the logarithm of the measured velocity dispersion and log f is the logarithm of the
measured flux. For HIIG the theoretical distance modulus, µθ, is given as

µθ = 5 log dL(z, θ) + 25, (9)

where z is the redshift, dL is the luminosity distance in Mpc and θ is a given set
of cosmological parameters. For GHIIRs, the value of µθ is inferred from primary
indicators and finally ε2 are the weights in the likelihood function.

The luminosity distance dL of the sources tracing the Hubble expansion is em-
ployed to calculate the theoretical distance moduli. We define, for convenience, an
extra parameter independent of the Hubble constant as:

DL(z, θ) = (1 + z)

∫ z

0

dz′

E(z′, θ)
, (10)
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i.e., dL = cDL/H0. Here E(z.θ) for a flat Universe is given by

E2(z, θ) = Ωr(1 + z)4 + Ωm(1 + z)3 + Ωw(1 + z)3y exp

(
−3waz

1 + z

)
(11)

with y = 1 + w0 + wa. The parameters w0 and wa refer to the DE EoS, the general
form of which is

pw = w(z)ρw (12)

with ρw the pressure and ρw the density of the postulated Dark Energy fluid. Dif-
ferent DE models have been proposed and many are parametrized using a Taylor
expansion around the present epoch:

w(a) = w0 + wa(1− a) =⇒ w(z) = w0 + wa
z

1 + z
. (13)

The cosmological constant is just a special case of DE, given for (w0, wa) = (−1, 0),
while the so called wCDM models are such that wa = 0 but w0 can take values 6= −1.

2.4. Joint analysis

A joint-likelihood analysis with the CMB and BAO probes is performed on the full
sample using the h-free likelihood method. Combining HIIG, CMB and BAO yields
Ωm = 0.298±0.012 and w0 = −1.005±0.051, fully consistent with the ΛCDM model.
It is clear that the solution space of HIIG/CMB/BAO, although less constrained, is
certainly compatible with the solution space of SNIa/CMB/BAO.

3. Results

This work presents observational constraints of the cosmological parameters and
the determination of the local value of the Hubble constant making use of the GHIIRs
in nearby galaxies and HIIG local and at high-z, the results are summarized in
the Figures 1, 2, 3, 4 and 5, where we describe the local L − σ relation followed
by GHIIRs, the determination of the local value of the Hubble constant, the local
L − σ relation, the Hubble diagram tracing local GHIIRs up to high-z HIIG, the
space of solutions in the cosmological parameters and the joint analysis of the other
tracers of the Hubble expansion.

4. Conclusions and future perspectives

• Our best estimate of the Hubble parameter is 71.0 ± 2.8 (random) ±2.1 (sys-
tematic) km s−1 Mpc−1. This result is the product of an independent approach
and, although at present less precise than the latest SNIa results, it is amenable
to substantial improvement.

• We have used the L−σ distance indicator to derive an independent local value
of the Hubble parameter H0. To this end we have combined new data for 36
GHIIRs in 13 galaxies of the “anchor sample” that includes the megamaser

107



Figure 1: L − σ relation for the GHIIRs. The adopted distances to the parent
galaxies come from of Cepheids. The green solid line is the fit to the data given in
the inset and the dashed line is the fit to the anchor sample of [4]. Taken from [7]

Figure 2: Left upper: Resulting H0 without correcting the luminosities for evolution.
Left Bottom: Same as the top panel, but using the fluxes corrected for evolution.
As discussed in [7], the difference between models 1-8 (in red) and models 9-16
(in blue) is the adopted extinction law as indicated by the figure legends. Middle:
The L − σ relation for the [5] sample using the velocity dispersions in the original
paper; the fluxes have been corrected using [10] extinction law. The solid line is the
fit to the HIIGs. The inset equation is the distance indicator, where the slope is
obtained from the fit to the HIIG and the Zp determined following the procedure
described in the text. Right: Our main result incorporating the evolution correction,
is H0=71.0±3.5 km s−1 Mpc−1(random+systematic) a value that is half way between
the most recent determination from Planck and SNIa. Taken and updated from [7].
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Figure 3: Hubble diagram connecting our local and high redshift samples up to
z ∼ 2.6. Red circles represent averages of the distance moduli in redshift bins. The
continuous line corresponds to Ωm = 0.249 and w0 = −1.18 (our best cosmological
model using only HIIG). The insets show the distribution of the residuals of the fit
that are plotted in the bottom panels. Taken from [9].

galaxy NGC 4258, with the data for 107 HIIG from [5]. Our new data is the
result of the first four years of observation of our primary sample of 130 GHIIRs
in 73 galaxies with Cepheid distances.

• Regarding future improvement of the L−σ distance indicator, our first priority
is to increase the anchor sample from the present 13 galaxies to the 43 galaxies
of our primary sample. Much of the error in the value of H0 is related to
the uncertainty in the value of the slope of the L − σ relation, thus it will be
important to include low luminosity HIIG, i.e., those with luminosities similar
to the luminosity of GHIIR, and also GHIIR in more distant galaxies.

• The addition of a second parameter in the L − σ relation can lead to an
important improvements in the distance indicator. In particular the size of
the starforming region has proven to be a real possibility potentially reducing
the scatter by about 40%. We also plan to expand the analysis to include
TRGB distances to the galaxies in the primary sample. Finally the evolution
correction needs a quantitative approach that takes into account the underlying
stellar continuum and differential reddening effect in the measurement of the
EW of the emission lines.
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Figure 4: Likelihood contours corresponding to the 1σ and 2σ confidence levels in
the {α, β, h,Ωm, w0} space for the Global sample. Taken from [9].

• We have analyzed a set of 181 HIIG in the redshift range 0.01 < z < 2.6. The
sample includes a new set of 41 HIIG observed with KMOS at the VLT in the
range of redshift 1.3 < z < 2.6. Using the L − σ distance indicator, we have
constrained cosmological parameters independently of the value of the Hubble
constant.

• Regarding the restrictions of the Ωm parameter we found that HIIG alone
constrain the matter density to high significance. Using the Full sample of 181
HIIG and the MultiNest MCMC procedure, we find Ωm = 0.244+0.040

−0.049 (stat).

• HIIG also constrain the value of the DE EoS parameter in the {Ωm, w0} plane
independently of the value of the Hubble constant and we find Ωm = 0.249+0.11

−0.065

and w0 = −1.18+0.45
−0.41 (stat).
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Figure 5: Likelihood contours corresponding to the 1σ and 2σ confidence levels in
the {Ωm, w0} space for a) the joint sample of HIIG, CMB and BAO and b) the joint
sample of SNIa, CMB and BAO. We show in the inset the sample size used in the
analysis. Only statistical uncertainties are shown. Taken from [9].

• Combining HIIG, CMB and BAO yields our best estimates Ωm = 0.298±0.012
and w0 = −1.005± 0.051, which, although less constrained, are certainly com-
patible with the solution space of SNIa/CMB/BAO using the SNIa Pantheon
sample.

• The HIIG results are comparable with those obtained from SNIa a decade ago
when the sample of SNIa was around few hundred. This is consistent with
the main conclusion of [13] that a sample of at least 500 HIIG (which we aim
to procure in the forthcoming developments of the project) is needed to have
errors comparable with those of the SNIa approach.
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[5] Chávez R., Terlevich R., Terlevich E., Bresolin F., Melnick J., Plionis M., Basi-
lakos S., 2014, http://dx.doi.org/10.1093/mnras/stu987,
http://adsabs.harvard.edu/abs/2014MNRAS.442.3565C, 442, 3565
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Abstract: We present the weak field force law due to those components of
the gauge CPT field which are a complex extension of the metric spin connec-
tion. Even though there is a resemblance to Modified Newtonian Dynamics
(MOND), we point out that there is no fundamental relation between gauge
CPT and MOND. However, we view MOND as an important empirical insight
which allows us to determine the physical strength constant in the weak gauge
CPT force law. Four simple experimental predictions are presented to validate
gauge CPT. Additional speculative experimental and observational predictions
are briefly discussed.
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In this paper we propose four experiments obtained from the gauge theory of
CPT transformations. An introduction to gauging the CPT symmetry as well as its
relation to the Baryonic Tully-Fisher Law (BTFL) - the basis for the experiments –
can be found in [5]. The development of the theory can be found in [1], [2], [3], [4].

Our starting point will be the arguments found in [5] showing that the flat galactic
rotation curves and the BTFL for spiral galaxies arise from the neutrinos produced by
stellar fusion sourcing the gauge CPT field. The extension of general relativity (GR)
from gauge CPT results in the replacement of the GR metric spin connection, ωµab,
by ωµab + 2βxµab, where β is the coupling constant associated with the new gauge
CPT field Xµ.1 Gauge CPT results in a mass independent acceleration, aX , sourced
by fermion chirality. The point source, weak field approximation due to the fixed
neutrino chirality is [5]:

aX = k
(Iν)

1
2

r
,

1Xµ = xµII+xµ5γ
5+xµabσ

ab, where σab = 1
4 [γa, γb], γa are the familiar Dirac gamma matrices,

and xµ(··· ) are the dynamical field components of the new gauge field. The physical implications
of the xµI and xµ5 components are not discussed in this paper.
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where Iν is the total neutrino luminosity (power), r is the distance from the neu-
trino source, and k is the physical constant associated with gauge CPT analogous
to Newton’s gravitational constant, GN . The xµab field equation and source term,
4iψσabγµψ, are found in [5]. The reasons for the neutrinos produced by stellar fusion
reactions being the source of aX can be found in [1], [3]. An additional discussion

regarding the appearance of (Iν)
1
2 as the source is in the appendix.

To determine the value of k, we turn to MOND by viewing it as an important,
empirical insight. We first note that aX has the same form, albeit with a different
source term, as the deep MOND regime gravitational acceleration (e.g., [6]), am, due
to a point mass, M :

am = (GNa0)
1
2

(M)
1
2

r
,

where a0 is the MOND acceleration parameter (1.2×10−10 m/s2), and r is the distance
to the point mass. However, aX comes from a gauge theory of a verified symmetry
whereas am comes from a proposed change to Newton’s second law at extremely low
accelerations ≤ a0. Because of the success in predicting flat rotation curves of spiral
galaxies, we view the MOND acceleration as an empirical law from which we can
determine k.

We use our Sun as the physical setting for determining k because its relevant
properties are known. We begin by noticing that because of the r−1 dependence
of aX , the strength of the gauge CPT force will always eventually overtake the r−2

gravitational force of a star. The distance from the Sun’s center, Rs, at which the
gauge CPT force equals the gravitational force will be taken as the onset of the
MOND regime:

k (Iνs)
1
2

Rs

=
GNMs

R2
s

= a0,

where the solar values are Iνs = (.023)× 3.83× 1026 W [7] and Ms = 1.99× 1030 kg.
From these two equations, we obtain k:

k =

(
a0GNMs

Iνs

) 1
2

= 4.25× 10−8 m

(kg · s) 1
2

.

To see if this is a reasonable value, we estimate the flat rotation curve velocity, vc, of
the Milky Way by approximating our Galaxy as a spherically symmetric system with
our Sun taken as the average star. We equate the value of aX with the centripetal
acceleration:

k
I

1
2
νgal

redge

=
v2
c

redge

, or vc =
(
kI

1
2
νgal

) 1
2

,

where redge is the radius of the Milky Way disc. Using the values Iνgal ≈ 0.023Lgal,
and Lgal ≈ 3 × 1010Lsun (L being the photon luminosity), we obtain vc ≈ 148 km/s
which is about 2

3
of the actual value. So, given the approximations, we accept the

above value of k for the following experimental predictions.
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The first two experimental predictions use a nuclear reactor as a tiny proxy for
a galaxy. Instead of the neutrinos produced by stellar fusion, the source of the weak
field gauge CPT force is the antineutrinos produced by the decay of fission fragments
in the reactor core. Just like the stellar neutrinos, the reactor antineutrinos are rela-
tivistic, have negligible interaction with anything, and have fixed chirality. As with
neutrinos, we assume that the force sourced by the antineutrinos is attractive. How-
ever, as suggested in [3], the possibility of a repulsive force sorced by antineutrinos
must be kept in mind because a third of the xµab source terms have opposite sign for
neutrinos and antineutrinos.

The first experiment is simple – just test the value of aX at various distances
from the reactor core using precision gravimeters or accelerometers. For example, by
treating a 200 MW reactor core as a point antineutrino source with 5% of the energy
carried away by antineutrinos, we obtain from the above aX equation:

aXreactor ≈
1.34× 10−4

r

m

s2
.

Equipment exists which can measure this. Obviously, this result is an approximation
for the actual distribution of cylindrical fuel rods. Because the aX formula was
derived from a linear weak field approximation argument [5], the actual reactor aX(r)
expression can be obtained by the vector addition of the aX(r) contributions of the
individual pellets contained in the fuel rods.

The second experiment is conceptually simple – test the time differences on clocks
placed at various distances from the reactor core. Because the effect of xµab is to
replace the GR ωµab by ωµab+2βxµab, we expect a gravitational redshift contribution
due to xµab. The effective weak-field potential, ΦX , associated with aX is

ΦX = −kI
1
2
ν ln r.

Therefore, the associated ΦX frequency (f) shift (at various distances from a 200 MW
reactor core treated as a point antineutrino source) is taken as in GR:

∆f

f
≈ ∆ΦX

c2
≈ kI

1
2
ν

c2
ln

(
r2

r1

)
≈ 1.5× 10−21 ln

(
r2

r1

)
.

Unfortunately, this will be difficult to measure because it will require the most sen-
sitive atomic clocks operating for a long time.

Because of the intense (anti)neutrino beams produced at some accelerators for
various experiments, we derive the formulae for the above experiments to be done
in the center of the beam at different distances along the beamline. The key to
the simple derivation of accelerator predictions is that the (anti)neutrinos are one
of only two particles produced in the decay of the pions and kaons produced by the
accelerator proton beam hitting a dense target. In the rest frame of the decaying pion,
the distribution of (anti)neutrinos will obviously be isotropic and monoenergetic
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(treating the neutrinos as massless). Hence, the decaying pions can themselves be
viewed as tiny nuclear reactors or stars as far as the production of (anti)neutrinos
is concerned. Therefore, we can calculate ΦX in the rest frame and then transform
to the lab frame to find ΦX there and subsequently calculate the acceleration and
frequency shift.

Our starting point will be simple kinematical relations from special relativity.
The first step is to find the neutrino energy, E0, in the rest frame of the decaying
pion, π. As routinely done, we treat the neutrino as a massless particle because it
has a small mass and is relativistic. Because the overwhelmingly dominant decay
channel of the pion is just a muon, µ, and neutrino, νµ, we immediately obtain two
elementary equations using the conservation of momentum and of energy. Solving
for E0, one easily obtains

E0 =

(
m2
π −m2

µ

)
c2

2mπ

,

where mπ, mµ are the masses of the pion and muon, respectively, and c is the
speed of light. The measured value of the neutrino energy in the lab frame, Eν ,
enables us to calculate the relative velocity, v, between the pion rest frame and lab
frame by the simple transformation of the neutrino energy-momentum four vector:

Eν = γE0 (1 + β), where β = |v| /c, and γ = (1− β2)
− 1

2 . One immediately obtains

β =
E2
ν − E2

0

E2
ν + E2

0

.

We can now determine the transformation of the neutrino luminosity magnitude, Iν ,
in the lab frame from the neutrino luminosity in the pion rest frame, I0, where
we define neutrino luminosity as the neutrino energy in a pulse divided by the pulse
duration. Using the energy transformation and time dilation, we have Iν = I0(1+β).

To obtain ΦX in the lab frame, we again identify ΦX as an extension of the
gravitational potential because of the replacement of the GR metric spin connection,
ωµab, by ωµab + 2βxµab. This results in a modification of the metric tensor, gµν ,
because of the equivalency between the metric spin connection formulation and the
standard (gµν) formulation of GR. Assuming the weak-field, stationary scenario in
the accelerator neutrino beam, we have g00 ≈ 1 + 2ΦX

c2
and gik ≈ −δik for i, k spatial

coordinates (+,−,−,−). Now, we can transform ΦX from the rest frame of the
pion to the lab frame via the Lorentz boost, Λ b

a , connecting the two frames: glab00 =
Λ a

0 Λ b
0 g

π
ab. We define the x spatial coordinate in the lab frame by the origin at the

pion decay location, and the narrow neutrino beam axis defines the x-axis with the
positive direction aligned with the neutrino flow. The only non-vanishing Λb

a are Λ0
0 =

coshω and Λ 1
0 = − sinhω, where γ = coshω. So, glab00 = Λa

0Λb
0g
π
ab = gπ00(cosh2 ω) −

sinh2 ω. This gives us: Φlab
X = c2

2
[gπ00(cosh2 ω)− sinh2 ω − 1] = c2

2
[(gπ00 − 1) cosh2 ω] =

Φπ
X cosh2 ω = γ2Φπ

X . From the above reactor formula, we have Φπ
X = k(I0)

1
2 ln( r

γ
),

where r is the lab frame distance from the origin to the point of interest. So, we

117



finally get

Φlab
X (r) ≈ kγ2

(
Iν

1 + β

) 1
2

ln

(
r

γ

)
, and alab

X (r) = −∂Φlab
X (r)

∂r
≈ −kγ

2

r

(
Iν

1 + β

) 1
2

.

To obtain a numerical estimation of the clock and acceleration experiments, we
turn to parameters found in [8] regarding the early Fermilab LBNF and DUNE
experiments. We also assume that the pions all decay at some average point. The
parameters are: Eν = 2.5 GeV, 7.5 × 1013 protons hitting a graphite target per
pulse (75% of those producing desired (anti)neutrinos), and 10µs pulse duration.
These numbers, along with the rest masses of the pion and muon, give from above:
β = 0.9997, γ = 40.8, and Iν = 2.25× 109J/s (during pulse). Finally, we obtain the
following Fermilab (Fl) accelerator estimates during the pulse:

aFlX (r) ≈ 2.37

r
m/s2, and

∆f

f
≈ 2.63× 10−17 ln

(
r2

r1

)
.

So, these numbers are a significant improvement over the reactor estimates, albeit
only during the pulse duration. Also, because both antineutrinos or neutrinos can
be produced at accelerators, the attractive or repulsive nature of the Xµ force can
be experimentally determined.

The accelerator formula can be easily generalized to points outside of the neu-
trino beamline – even to positions before the proton target. Because the neutrino
distribution is spherically symmetric in the pion rest frame, rπ = (x2 + y2 + z2)

1
2 ,

where y and z are the coordinates perpendicular to the neutrino beamline. When
transforming to the lab frame, y and z do not change. Therefore, one immediately
obtains the generalized accelerator formula

Φlab
X (x, y, z) ≈ kγ2

2

(
Iν

1 + β

) 1
2

ln(x2γ−2 + y2 + z2).

(Obviously, the arguments of logarithms must be dimensionless. We are using a scale
factor of 1 meter in this paper.)

We now offer a couple of other conjectures similar to the comments found in [5].
First, inspired by thermal neutron experiments used to test GR, interference effect
experiments can be carried out at accelerator neutrino beams by putting one path in
the neutrino beamline and recombining with another path outside of the beamline.
Second, we speculate that the xµab terms may be of relevance to the disagreement
of GN measured by various experiments. Because these terms act on matter in
the same manner (via the coupling to σab) as the expected gravitational ωµab, some
experiments might be susceptible to the flux of solar neutrinos passing through them.
Variations in the experimental results due to the apparatus orientation with solar
neutrinos, as well as neutrino flux variations due to time of day and season, may
occur. It is interesting to note that the variation of aX at the Earth’s surface from
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day to night due to the flux of solar neutrinos is given by δaX
aX
≈ −2rE

RE
≈ 8.5 × 10−5

– about 1.8 times larger than δGN

GN
, where rE is the Earth’s radius, and RE is the

Earth’s distance from the Sun.
Also, galactic neutrino events should source an aX . For example, the neutrino

burst emitted at the beginning of a type II supernova will source an aX . This should
appear as a spike in gravitational wave detectors coincident with the arrival of the
supernova neutrinos. Other qualitative astrophysical comments can be found in [5],
however, the comment regarding GR predictions near black holes needs amending.
The author has subsequently learned that non-fusion sourced neutrinos can be pro-
duced by black holes accreting significant amounts of matter via the collision of ex-
tremely high energy jet material with surrounding matter. Presumably, the neutrino
emission will be narrowly confined along the jet directions (parallel and antiparallel
to the black hole rotation axis) much like the neutrino distribution produced at accel-
erators. If there is no significant accretion disk, then no neutrinos are sourced by the
black hole, hence, no Xµ modifications to GR predictions near the black hole. If one
can observe stellar motion near a supermassive black hole with accretion disks and
jets, then deviations from GR will occur due to the generalized accelerator formula
for aX .

Appendix

We present a brief supplementary discussion to that found in [5] regarding the
form of the weak field aX law. The r−1 dependence has been adequately covered
in [1], [3], [5], so we present two more arguments for the (Iν)

1
2 source term. First,

we examine the field equation in [5] obtained from varying the action with respect
to xµab:

4βDν(∂
νxµcd − ∂

µxνcd)Tr[(σ
ab)†σcd]

+ 2β{(ωνrs + 2βx∗νrs)(∂
νxµcd − ∂

µxνcd)Tr[[σ
ab, σrs]†σcd]}

+ 2βDν(2βx
ν
cdx

µ
rs + ωνcdx

µ
rs + ωµrsx

ν
cd)Tr[(σ

ab)†[σcd, σrs]]

− {β(ωνcd + 2βx∗νcd)(2βx
µ
mkx

ν
rs + ωµmkx

ν
rs + ωνrsx

µ
mk)Tr[[σ

ab, σcd]†[σmk, σrs]]}
+ 8κηbc(eaµenρ − enµeaρ)(ωρcn + 2βx∗ρcn)

+ 8κηac(ebµenρ − enµebρ)(ωρnc + 2βx∗ρnc)

=4iψσabγµψ + 8κDν(e
aνebµ − eaµebν).

As discussed in [5], the terms with coefficient κ (κ = (−16πGN)−1) identically
satisfy a new metric spin connection with ωµab replaced by ωµab + 2βx∗, so we will
ignore those and focus on the rest of the terms. We interpret these terms as the field
equations for xµab (coupled to ωµab). In the very, very slowly changing regime with
very weak gravity and very far from the neutrino source, we have the x(...)∂x(...) and
x(...)x(...) terms dominating over the Dν∂x

(...), ω(...), and x(...)x(...)x(...) terms. Be-

cause the neutrino source term, 4iψσabγµψ, is proportional to Eν , we will have
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x(...) ∼ (Eν)
1
2 , hence the (Iν)

1
2 dependence. We apply the exact same argument

to the Palatini variation with respect to ωµab of the Lagrangian found in [5]. The
Palatini variation results in:

κηbc(enµeaρ − eaµenρ)(ωρcn + βx∗ρcn + βxρcn)

+ κηac(enµebρ − ebµenρ)(ωρnc + βx∗ρnc + βxρnc)

+
i

4
ψ{σab, γµ}ψ +

β2

4
{x∗νrs(−∂νx

µ
cd + ∂µxνcd)Tr[[σ

ab, σrs]†σcd]

+ xνrs(−∂νx∗µcd + ∂µx∗νcd )Tr[[σab, σrs](σcd)†] +
1

2
xνrs(2βx

∗µ
mkx

∗ν
cd

+ ωµmkx
∗ν
cd + x∗µmkω

ν
cd)Tr[[σ

ab, σrs] · [σmk, σcd]†]

+
1

2
x∗νrs(2βx

µ
mkx

ν
cd + ωµmkx

ν
cd + xµmkω

ν
cd)Tr[[σ

ab, σrs]† · [σmk, σcd]]}

=κDν(e
aµebν − eaνebµ).

This paper is dedicated to the memory of the author’s father.
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Abstract: We make fits to the corresponding Hubble–Lemâıtre diagram of
supernovae Ia with various cosmological models incorporating intergalactic
extinction, evolution of the luminosity of supernovae and redshift components
due to partially non-cosmological factors. The data are well fitted by the
standard model including dark energy, but there is a degeneracy of solutions
with several other variables.
Within this degeneracy, some models (Einstein–de Sitter, static and other
models), which were previously discarded with this Hubble–Lemâıtre diagram
of supernovae Ia, can give good fits to the data if we introduce a supernova
absolute magnitude evolution ∼ −0.10 mag Gyr−1 or gray extinction ∼ 10−4

mag Mpc−1. Extiction or evolution may thus mimic the effect of dark energy.
A partial non-cosmological redshift component may also mimic dark energy
but would require a recalibration of the absolute magnitude different from the
local measurements.
(Abridged version of Ref. [1]).

Keywords: cosmology; dark energy; supernovae Ia

PACS: 98.80.Es

1. Introduction

In 1998–1999 Riess et al. [2] and Perlmutter et al. [3] published papers estab-
lishing the existence of an accelerated expansion from the analysis of type Ia su-
pernovae (SNe Ia). Measured luminosity distance with supernovae exceeded by up
to 0.25 to 0.28 magnitudes that expected in the standard model in the early 1990s
(open universe with matter density ΩM ∼ 0.2). This excess could be explained by
adding a positive cosmological constant or quintessence. They saw that the fit deter-
mines an accelerating expanding universe with 99.5%–99.9% confidence level. With
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the more recent, larger and more accurate sample of data by Ref. [4] (Pantheon
data), the results of Riess et al. and Perlmutter et al., a universe with a positive
cosmological constant, were confirmed with much lower error bars.

There are other ways to obtain a fit to the data of SNe Ia. We next analyze
various fits, focusing on scenarios, where no Λ term is included.

2. SNe Ia data: Pantheon

The ‘Pantheon’ sample of SNe Ia [4] is currently one of the largest samples and
with highest-redshift supernova data. Thes redshift range of the sample spans be-
tween z = 0.001 and z = 2.3, extending the range far beyond z = 1. We use the
version of 2018 of this sample with 1048 SNe.

The function to fit is:

y =100.2m = ADL70, (1)

A =
70 km s−1Mpc−1

H0

100.2M+5, (2)

where DL70 is the calculated luminosity distance (dependent on the cosmology) for
H0 = 70 km s−1 Mpc−1. Thus, both H0 and M (absolute magnitude) are included
in A.

3. Fits with various cosmological models

We can fit Pantheon data for either the standard cosmological ΛCDM model or
alternative cosmologies [5], [6]. Results in Table 1.

Standard ΛCDM model: The fit leaves A and ΩM as free parameters. In Fig. 1,
we show the logarithm of the quantity y versus the logarithm of z.

FLRW with curvature without dark energy: We now consider a Friedman –
Lemâıtre – Robertson – Walker (FLRW) cosmology without dark energy sat-
isfying ΩK = 1 − ΩM , leaving both A and ΩM as free parameters. In this way,
we obtain a negative curvature cosmology (or a flat one if ΩM = 1). In the fit
we obtain an ΩM value of practically zero. The fit is worse than in the case of
the model ΛCDM. The low value of Q almost completely rules out this model.

Einstein–de Sitter: The Einstein–de Sitter (EdS) model is equivalent to an FLRW
cosmology with ΩM = 1 and ΩΛ = 0. There is only one free parameter: A.
Such a restricted model obtains a very poor fit and is completely discarded. As
we shall see later, if we add certain factors to this model (evolution, extinction
or partially non-cosmological redshifts) we can obtain much better fits.

Quasi-steady state cosmology (QSSC): In this model, calling Ωc the matter
creation field we have:

DL(z) =
c

H0

(1 + z)

∫ z

0

dz√
Ωc(1 + z)4 + Ωm(1 + z)3 + ΩΛ)

. (3)
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Table 1: Best fits of Pantheon data (N = 1048 supernovae Ia) with different
cosmological models, or with extinction, or evolution or a non-cosmological LSV
redshift component. Here Q is the probability associated to a χ2 with degrees of
freedom= N − p, where p is the number of free parameters.

Model Free parameters χ2 Q

ΛCDM
A = 13.389 ± 0.041
ΩM = 0.287 ± 0.012
ΩΛ = 1 − ΩM

1024.3 0.678

FLRWcurvΛ = 0
A = 13.909 ± 0.039
ΩM = 0 ± 0.024

1147.1 0.015

EdS A = 14.832 ± 0.043 2395.4 0

QSSC

A = 14.444 ± 0.067
ΩM = 1.439 ± 0.068
ΩΛ = 0 ± 0.042
Ωc = 1 − ΩM − ΩΛ

1635.6 0

Rh = ct A = 14.091 ± 0.030 1296.3 0
Milne A = 13.909 ± 0.029 1147.1 0.016

Static. lin. Hub. A = 14.047 ± 0.029 1239.1 0
Static tired light A = 15.559 ± 0.061 4374.1 0

EdS extinction
A = 13.487 ± 0.045
aV = (1.156 ± 0.031) × 10−4 Mpc−1 1050.8 0.453

St. lin. Hub. ext.
A = 13.566 ± 0.045
aV = (0.403 ± 0.031) × 10−4 Mpc−1 1065.2 0.333

St. tir. l. ext.
A = 12.959 ± 0.051
aV = (2.775 ± 0.048) × 10−4 Mpc−1 1072.9 0.275

EdS evol.
A = 13.257 ± 0.048
α = −0.102 ± 0.003 Gyr−1 1020.4 0.709

EdS+LSV1
A = 31.445 ± 0.119
K1 = (−2.046 ± 0.005) × 10−4 Mpc−1 1490.7 0

EdS+LSV2
A = 38.263 ± 0.212
K2 = (−2.113 ± 0.003) × 10−4 Mpc−1 1194.8 0.0008

FLRW curv. Λ = 0
+LSV 1

A = 9.479 ± 0.712
ΩM = 0.090 ± 0.015
K1 = (0.720 ± 0.060) × 10−4 Mpc−1

1091.1 0.157

FLRW curv. Λ = 0
+LSV 2

A = 40.563 ± 0.192
ΩM = 0.190 ± 0.010
K2 = (−2.220 ± 0.010) × 10−4 Mpc−1

1082.0 0.208
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Figure 1: Fit of Pantheon data with ΛCDM, ΩM = 0.287.

We see that the term Ωc behaves like a radiation term in FLRW, which also
goes as (1+z)4. With the Pantheon data and without taking into account other
factors, we obtain a fit that completely rules out this model. There have been
previous attempts to fit supernova Ia data with this model [8] with apparently
very good results, but in that paper they also take dust extinction into account.

Rh = ct: This is an FLRW model in which we have an equation of state: ρ+3p = 0,
thus leading to an expansion Rh = c t. The luminosity distance is:

DL(z) =
c

H0

(1 + z) ln(1 + z). (4)

The fit, being better than QSSC or Einstein–de Sitter is still ruled out by the
Pantheon data. Other authors [9] have stated that this model fits the super-
nova diagram, but only after re-evaluating the calibration of their luminosities,
setting their absolute magnitude as a function of several adjustable parameters
instead of being constant.

Milne Universe: This model is a special case of the FLRW metric in which we
consider zero density, pressure and cosmological constant. This results in a lin-
ear time dependence of the scale factor. We have the following expression for
the luminosity distance:

DL(z) =
c

H0

(1 + z) sinh[ln(1 + z)]. (5)

Despite being a model with very restricted parameters, the fit is better than
that of other models considered.
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Static Euclidean with linear Hubble–Lemâıtre law: In this case, we consider
a static universe in which we have a redshift term due to energy loss without
expansion (no time dilation), and the linear Hubble–Lemâıtre law c z = H0D
is maintained even at high redshift. The luminosity distance is:

DL(z) =
c

H0

√
(1 + z)z. (6)

The factor
√

(1 + z) stems from the loss of energy of photons due to the non-
cosmological redshift. We obtain a setting that rules it out. Moreover, although
it is not the subject of this work, a simple static model has many other prob-
lems.

Static Euclidean with tired light: This variation considers that photons lose en-
ergy in their path by some kind of interaction, and that this energy loss is
proportional to the length traveled: dE

dr
= −H0

c
E. This modifies the luminous

distance as follows:

DL(z) =
c

H0

√
(1 + z) ln(1 + z). (7)

In view of the results, this consideration of energy loss is totally incompatible
with the Pantheon data and greatly worsens the fit of the simplest linear model.

4. Fits including extinction

Introducing an extinction term will make very distant galaxies appear less lu-
minous. This effect can counteract that of dark energy and thus obtain a good
fit [5]. Assuming a constant comoving dust density term and with κ representing the
absorption coefficient per unit mass, we have the following expression for luminosity:

LV,rest = 4πFV,restD
2
Leρdust

∫ d
0 dr κ[λV

1+z(d)
1+z(r) ], (8)

where the comoving distance d in the corresponding cosmology associated with the
redshift of the supernovae. If we assume the absorption coefficient with a wavelength
dependence:

κ(λ) = κ(λV )

(
λ

λV

)−β

, (9)

we adopt β = 2, see [5]. With this we obtain:

LV,rest = 4πFV,restD
2
Le

c aV
H0(β+m)

[(1+z)m−(1+z)−β ]
, (10)

with aV ≡ κ(λV )ρdust the absorption in V per unit length. Together with A, the
parameter aV will be the one we shall fit. Regarding the other parameters, m = 1 for
the Einstein de–Sitter (see best fit in Fig. 2) and Linear Static models, and m = 0
for the static model with tired light. The attenuations of aV = 0.4−2.8×10−4 Mpc−1
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Figure 2: Fit of Pantheon data with Einstein de–Sitter including aV = 1.156 ×
10−4 Mpc−1, respectively.

are within the range of possible values. Assuming κ(λV ) ∼ 105 cm2/gr [10], the value
for the dust density necessary to produce such an extinction would be ρdust ∼ 10−34−
10−35 g/cm3, which is within the range of possible values. Ref. [11] allows values as
high as ρdust ∼ 10−33 g/cm3 for the high z IGM within the standard concordance
cosmology. For comparison, the average baryonic density of the Universe (taking
Ωb = 0.042) is ρb = 3.9×10−31 g/cm3, so this would mean that IGM dust constitutes
0.025–0.25% of the total baryonic matter. These amounts are reasonable.

5. Fits including evolution

Several researchers (e.g., Refs. [12], [13], [14]) have pointed out that an evolution
of SNe Ia luminosity can fit their Hubble–Lemâıtre diagram without dark energy.

In our analysis, we use a simple expression to model cosmic time-dependent
evolution and a parameter α that will fit cosmological models without dark energy.
We assume that the absolute magnitude of supernovae varies with cosmological time,
using a simple evolution equation:

M = M0 − α[t(0) − t(z)], (11)

where M0 is the absolute magnitude without considering evolution, t(z) is the age
of the universe at a given z [t(0) for z = 0]. We calculate for each given z that age
and incorporate the new M into the formula for the A parameter fit:

Aevol = A× 10−0.2α[t(0)−t(z)]. (12)
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We fit the SNe Ia using an Einstein–de Sitter model with evolution. We obtain
a very good fit. In addition, we have smaller uncertainties by fitting only two param-
eters (A and α). As we can see, with the Pantheon data, a model with evolution is
just as valid (or better) than one with dark energy. Moreover, when trying to fit with
both terms, the best value of Q is for the one that gives ΩΛ ∼ 0. See best fit in Fig. 3.

Figure 3: Einstein–de Sitter with evolution: ΩM = 1, ΩΛ = 0, α = −0.102 Gyr−1.

As said by Ref. [12], the result is that cosmological models and evolution are
highly degenerate with one another, so that the incorporation of even very simple
models for evolution makes it virtually impossible to pin down the values of ΩM

and ΩΛ.

6. Fits including partially non-cosmological redshifts

If we add a partially non-cosmological redshift or blueshift we obtain distances
for the supernovae that differ from those obtained in the standard model. The
non-cosmological redshift component may be due to the non-conservation of the
energy-momentum tensor of a photon propagating through electromagnetic fields
[Lorentz–Poincaré Symmetry Violation (LSV)] [15] or Mach effects that relate tired
light with the mass of the Universe [16], [17] or other non-standard effects. The
Hubble diagram could be fitted without the need for dark energy.

We consider models in which the total redshift is the sum of the redshift due to
expansion plus a static term. The excessive dimming of very distant galaxies can be
attributed to this combined redshift without the need to include a dark energy term.
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For an SN Ia we have the relation:

zc =
1 + z

1 + zLSV

− 1, (13)

where zc is the cosmological redshift, zLSV is the non-cosmological redshift, which
depends on the model. We have two different LSV models as given in Table 2.

Table 2: Two different models of non-cosmological redshifts.
Type 1 2
dν k1νdr k2νedr
ν0 νee

k1r νe(1 + k2r)

zLSV e−k1r − 1 − k2r
1+k2r

rLSV − ln(1+zLSV 1)
k1

− zLSV 2

k2(1+zLSV 2)

In model LSV-1, the variation in frequency is proportional to the instantaneous
frequency and the distance; in model LSV-2, to the emitted frequency (νe) and the
distance. We need an iterative function to obtain the values of zc, r and zLSV, since
they depend on each other. For this we will use Eq. (13) and the relations in Table 2
with

r(zc) = c[t(0) − t(zc)], (14)

where t(z) is the age of the universe at redshift z. Positive values for the k indicate
a blueshift with a small or even decreasing change in the amplitude A. This non-
cosmological blueshift increases the magnitude of SNe Ia at high redshift. With
negative values, we obtain a non-cosmological redshift that increases the value of A
and a reduction in photon frequency with distance traveled. For instance, we try the
fits with Einstein-de Sitter or FLRW with curvature, ΩΛ = 0.

In an Einstein–de Sitter universe with the LSV-1 model, by including the non-
cosmological redshift we obtain a better fit than the original one, although still far
from that obtained by including extinction or evolution. In view of the results, the
Pantheon data would rule out this model. The negative value of k1 indicates that
we have redshift. The LSV-2 model works better than the LSV-1 model but is also
practically ruled out (Q =0.0008). Similar results were obtained with the Pantheon
sample by Ref. [18].

With FLRW with curvature (ΩΛ = 0) we obtain good fits. However, the am-
plitude of A is quite different from that in the standard model fit, thus implying,
according to Eq. (2), an important variation in the absolute magnitude with respect
to the locally calibrated one. Results with the Pantheon sample by Ref. [18] were
similar, although within unclear dependence of A given that the type of fit was
different.
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7. Conclusions

In this work we have focused on well-known cosmologies, as well as on simple mod-
els for extinction, evolution and partial redshift not due to expansion. As expected,
the standard model continues to fit the data excellently, just as it did previously the
small SNe Ia samples used by Riess et al. and Perlmutter et al. It is very interesting
to see, however, that other models, discarded as a basis for current cosmological
study, also fit the supernova data.

Some models (Einstein–de Sitter, static models and others) have the same prob-
ability as that of the standard model or even slightly higher if we allow a super-
nova absolute magnitude evolution of ∼ −0.10 mag Gyr−1 or a gray extinction of
∼ 10−4 mag Mpc−1. The inclusion of dark energy (and thus accelerated expansion
of the universe) is not necessary in view of this analysis. There is a degeneracy of
several variables: dark energy, extinction, evolution, partially non-cosmological red-
shifts (although requiring calibration of M far from compatibility with local SNe Ia
measurements), and possibly other paramaters that we have not explored here.
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Abstract: In 1922, Alexander Friedmann applied Einstein’s equations to
a three-dimensional sphere to describe the evolution of our universe. In this
way he obtained a nonlinear ordinary differential equation (called after him)
for the expansion function representing the radius of that sphere. At present,
the standard cosmological ΛCDM model of the universe is based just on the
Friedmann equation. It needs a significant amount of dark matter, about six
times that of the usual baryonic matter, besides an even larger amount of
dark energy to be consistent with the real universe. But to date, both dark
matter and dark energy have remained without concrete evidence based on di-
rect physical measurements. We present several arguments showing that such
a claimed amount of dark matter and dark energy can only be the result of
vast overestimation, incorrect extrapolations, and that it does not correspond
to the real universe.
The spatial part of our universe seems to be locally flat and thus it can be
locally modeled by the Euclidean space. However, Friedmann did not consider
the flat space with zero curvature. Therefore, in the second part of this pa-
per we will derive a general form of the corresponding metric tensor satisfying
Einstein’s equations with zero right-hand side.

Keywords: Einstein’s equations, modeling error, incorrect extrapolations,
dark matter, dark energy, metric tensor, Ricci tensor, Christoffel symbols,
Laplace operator

PACS: 4.20.-q, 95.35.+d, 98.80.-k

1. Introduction

In 1584, Giordano Bruno wrote the treatise [2], where among other things he
conjectured that the universe is infinite. From that time, opinions on the shape of
the universe have often changed. Isaac Newton and many others understood the
universe as the Euclidean space En for n = 3.

However, in 1900 the German mathematician and physicist Karl Schwarzschild
proposed (see [22, p. 66]) that the universe for a fixed time might be non-Euclidean
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and even bounded, i.e., having a finite volume. He envisioned it as a three-dimen-
sional manifold. Recall that a manifold locally resembles Euclidean space near each
point. More precisely, a set of points M ⊂ Em is said to be an n-dimensional
manifold with n ≤ m if each of its points has an open neighborhood in M that
can be continuously mapped onto an open subset of En such that the inverse is
continuous, too. An example of a manifold is the graph of a parabola, a hyperboloid
of two sheets, the surface of a torus, and so on. On the other hand, the union of the
hyperplane x1 = 0 and axis x1 in En is not a manifold for n > 1.

Note that non-Euclidean geometry arose in the first half of the 19th century
during many attempts to understand the axiomatic construction of Euclidean geom-
etry — especially in proving the independence of Euclid’s fifth postulate of parallels.
We include among its founders Carl Friedrich Gauss, Nikolai I. Lobachevskii, János
Bolyai, Bernhard Riemann, Sophus Lie, Felix Klein, and many others. The history
of the development of non-Euclidean geometries is described in detail in the review
article [3].

According to Einstein’s cosmological principle, our universe at each point in
time, i.e. on each isochrone, is homogeneous (possessing translation symmetry) and
isotropic (possessing rotational symmetry) on large scales, see [23, p. 409]. Roughly
speaking, its curvature is constant at any point and in any direction.

According to the Copernican principle, humans on Earth are not privileged ob-
servers of the universe. The isotropy is thus verified by astronomers only from our
Earth and its close neighborhood. For instance, it is confirmed by the cosmic mi-
crowave background radiation (CMB) which exhibits tiny fluctuations of order 10−4 K
from its mean temperature 2.7260 K. Also the well-known γ-ray bursts show an al-
most uniform distribution on the celestial sphere. Pictures of the Hubble Deep Field,
the Hubble Deep Field-South, the Hubble Ultra-Deep Field, the Hubble eXtreme
Deep Field, etc., taken by the Hubble space telescope illustrate this isotropy on very
large cosmological scales as well.

In the Hubble test of the homogeneity of the universe, one has to measure the
apparent magnitude (energy flux f from the galaxy). The number of galaxies in the
sky brighter than f should vary as f−3/2, see [18], [23, Chapt. 14]. For a modification
of this test to γ-ray bursts see also [15]. Note that isotropy at all points implies
homogeneity at all points, see [24, Appendix].

Einstein’s equations were not developed for the purpose of the dynamical evo-
lution of the entire universe. This was done later in 1922 by Alexander Fried-
mann (1888–1925) who derived from Einstein’s equations a nonlinear ordinary differ-
ential equation (4) for the expansion function a = a(t), see [4]. He assumed that the
universe can be described by an expanding three-dimensional sphere (hypersphere)

S3
a = {(x, y, z, w) ∈ E4 |x2 + y2 + z2 + w2 = a2} (1)

which enabled him to avoid boundary conditions.
The present standard cosmological ΛCDM (Lambda-Cold Dark Matter) model

of the evolution of our universe is based just on the Friedmann equation. However,
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Friedmann’s description was very brief. Therefore, in [8] we presented a detailed
derivation of the Friedmann equation for an unknown expansion function a = a(t)
representing the radius of the universe. A natural question arises whether we can
apply Einstein’s equations that are tested on scales of the Solar system to the whole
universe, which is a 15 orders of magnitude larger object than the astronomical
unit au. We will answer this question in Sections 2 and 3.

The term Big Bang was first used by Fred Hoyle in 1949. Nevertheless, the idea
that the universe could have “zero radius” in the very distant past was formulated
by Friedmann already in 1922. In the English translation of his article [4], footnote
11 states:

The time since the creation of the world is the time that has flowed from that
instant when the space was one point (R = 0) until the present state (R = R0); this
time may also be infinite.

George Lemâıtre came to the same conclusion five years later in his article A ho-
mogeneous universe with constant mass and increasing radius explains the radial
velocities of extragalactic nebulae, see [14].

Now we present an important theorem which helps us to model Einstein’s cos-
mological principle. Its proof can be found in e.g. [23, Chapt. 13].

Theorem 1. For any dimension n > 1 there exist exactly three maximally sym-
metric manifolds, namely, the sphere Sn, the Euclidean space En, and the hyperbolic
pseudosphere Hn.

The curvature index of the above three maximally symmetric manifolds is k = 1,
k = 0, and k = −1, respectively.

Already in 1900, Karl Schwarzschild [22] speculated that the our universe could
be hyperbolic. In 1924, Alexander Friedmann published another famous paper [5],
where a negative curvature index k = −1 is considered. However, he assumed the
universe has a negative mean mass density (see [5, p. 2006]) and thus it is not clear
how to satisfy such a paradoxical assumption. Moreover, the manifold H3 cannot be
isometrically imbedded to a low-dimensional Euclidean space, see [7, p. 279].

In Sections 4–8, we will apply Einstein’s equations to the three-dimensional Eu-
clidean space E3.

2. Friedmann equation for the three-dimensional sphere

For a given smooth positive expansion function a = a(t) define the Hubble pa-
rameter H = H(t), called also the Hubble-Lemâıtre parameter, by

H(t) :=
ȧ(t)

a(t)
. (2)

It can be thus expressed as the time derivative of the natural logarithm in the
following way

H(t) =
d
(

ln
a(t)

a0

)
dt

, (3)

133



where a0 > 0 is an arbitrary length constant and thus the argument a(t)/a0 is
dimensionless.

Consider Einstein’s equations with cosmological constant Λ (see [17]) on the
expanding sphere (1) with radius a = a(t). Due to its maximum symmetry, Einstein’s
equations can be largely simplified (see e.g. [8] for a detailed derivation). In this
way, Friedmann arrived at the following equation

ȧ2

a2
=

8πGρ

3
+

Λc2

3
− kc2

a2
(4)

which is at present called the Friedmann equation. Here G = 6.674 ·10−11 m3kg−1s−2

is the gravitational constant, c = 299 792 458 m/s is the speed of light in a vacuum,
ρ > 0 is the mean mass density, and k = 1 is the curvature index. It is a first order
nonlinear ordinary differential equation for the unknown radius a = a(t). Several
typical graphs of the expansion function a = a(t) are given in [12, pp. 21–22].

Let us emphasize that Friedmann in [5] derived his equation also for the curvature
index k = −1, but the case k = 0 was not taken into account by him. From Einstein’s
equations one may also derive a second order linear ordinary differential equation
for a = a(t) that is surprisingly independent of the curvature index k and that is
also called the Friedmann equation, see [8, p. 169]. However, this equation does not
appear in [4], [5], too.

Now divide the Friedmann equation (4) by the square H2 ≥ 0 as is usually done in
the literature on cosmology, i.e., without a preliminary warning that we may possibly
divide by zero, which can lead to various paradoxes (see e.g. [10], [11]). Then we get
the so-called normalized Friedmann equation

1 = ΩM(t) + ΩΛ(t) + ΩK(t) (5)

for three normalized cosmological parameters, which are defined as follows

ΩM(t) :=
8πGρ(t)

3H2(t)
> 0, ΩΛ(t) :=

Λc2

3H2(t)
, ΩK(t) := − kc2

ȧ2(t)
. (6)

Saul Perlmutter calls the parameter ΩM the mass density and ΩΛ the vacuum energy
density (see [19]). The parameter ΩK is called the curvature parameter in [20]. Note
that (5) is still a differential equation, since the derivative ȧ is obviously present in
the Hubble-Lemâıtre parameter (2) which is contained in (6).

3. Main drawbacks of the standard ΛCDM model

In this section we present several inadequate properties of the current cosmolog-
ical model.

1. It is said that the gravitational constant G is the worst established constant
of all fundamental physical constants, since its value is known only to 3 (or 4)
significant digits. However, we do not know any significant digit of the cosmological
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constant Λ, yet. We even do not know whether it exists, even though there are
thousands of papers on this constant. Note that the standard cosmological model
only assumes that Λ ∼ 10−52 m−2, i.e., an extremely small number in the SI base
units. From its physical dimensions it follows that Λ has nothing to do with any
kind of energy.

2. The main argument against the proposed amount of vacuum (dark) energy
is the 120-order-of-magnitude discrepancy between the measured and theoretically
derived density of vacuum energy (see [1]). From this it is clear that the standard
cosmological model, which is a direct mathematical consequence of Einstein’s equa-
tions, does not approximate the real universe well [12].

3. The following approximate values

ΩM(t0) ≈ 0.3, ΩΛ(t0) ≈ 0.7, ΩK(t0) ≈ 0, (7)

where t0 is the age of the universe, were obtained by a combination of the methods
of Baryonic Acoustic Oscillations, Cosmic Microwave Background, and Supernovae
type Ia explosions. Independent fits with data for these three methods are performed
and it is said that these methods are independent. However, they cannot be indepen-
dent, since all of them use the cosmological parameters (6) satisfying the Friedmann
equation (5).

4. For the Einstein stationary universe we have

ȧ ≡ 0. (8)

Hence, by (2) we get H(t) = 0 for any time instant and the density of dark and
baryonic matter ΩM = ∞ which is absurd. More precisely, ΩM is not well defined.
However, the density of baryonic matter is always a finite number in the real universe.
In [6], we present ten independent arguments against the proclaimed amount of dark
and baryonic matter ΩM(t0) ≈ 0.3 from (7).

For an oscillating universe we find that ȧ(t1) = 0 for some t1 > 0, where a = a(t)
attains its maximum. Hence, H(t1) = 0 and the density of dark matter is ΩΛ =∞,
although the universe starts to collapse from the time instant t1.

5. At present it is believed that a(t) → ∞ for t → ∞. From (5)–(6) we get
1 > ΩΛ(t) if k ≤ 0, and thus 1

3
Λc2 < H2(t) for arbitrary time. From this and (2) we

see that also the time derivative of the expansion function grows beyond all limits if
Λ > 0. Consequently, the derivative ȧ(t)→∞ for t→∞, i.e., the expansion speed
is much faster than the speed of light.

6. Another paradox concerns the Big Bang itself. Since ȧ(0) = ∞, we find that
ΩK(0) = 0. However, a similar value of ΩK(t0) ≈ 0 is proposed by cosmologists also
at present. For the time before the decoupling of the cosmic microwave background
the equation (4) has to be slightly modified (see [7, p. 296]), but the unpleasant
property ȧ(0) =∞ remains.
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7. For a parabolic space with Λ = 0 the first derivative of the expansion function
ȧ is decreasing, but |ΩK| is increasing in time. This is strange, is not it?

8. If at present the expansion of the universe accelerates, then ȧ = ȧ(t) is not
a monotone function. However, then the curvature parameter ΩK(t) is also not
monotone. This is also strange, since the universe is by observations continually
expanding all the time.

9. Luminosity distances of cosmological objects (including supernovae explo-
sions) are evaluated by means of the formula

dL =
c(1 + z)

H0|ΩK|
1
2

sinn
{
|ΩK|

1
2

∫ z

0

[(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ]−
1
2 dz
}
, (9)

where
H0 = H(t0) ≈ 70 km s−1Mpc−1 (10)

is the current value of the Hubble constant and

sinnx =


sinx for k = 1,

x for k = 0,

sinhx for k = −1.

Note that formula (9) contains cosmological parameters (6). Hence, (9) approximates
real distances sufficiently accurately, if the Friedmann equation describes reality well.
Therefore, testing whether the expansion of the universe accelerates by means of (9)
is a typical circular argument.

10. Einstein’s equations are not scale invariant from several reasons. They do
not describe reality well on micro-scales. They are nonlinear and fully deterministic,
whereas the evolution of the universe may depend on quantum phenomena. For
instance, a small quantum fluctuation in one human brain may completely destroy
the Earth or change the trajectory of an asteroid. This cannot be described by
Einstein’s equations. Therefore, we should not make any extrapolations from local
systems (such as the Solar system) to the entire universe, see [10], [11], [12]. A century
of excessive extrapolations of Einstein equations yielded that the ΛCDM-model gives
completely wrong results. Moreover, from a trivial ordinary differential equation (4)
incorrect conclusions are made about the age of the universe, its composition (the
existence of some mysterious dark matter and dark energy), its development, etc.
We should avoid various “delicate” limits such as t→ 0, t→∞, a→ 0, a→∞, etc.

4. Einstein’s equations for the Euclidean space

Now we shall consider Einstein’s field equations of general relativity with zero
right-hand side and zero cosmological constant

Rµν −
1

2
Rgµν = 0, µ, ν = 0, 1, 2, 3, (11)
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for the symmetric metric tensor

gµν = gνµ, (12)

where Rµν is the Ricci tensor (defined by (30) later) which is also symmetric

Rµν = Rνµ (13)

and

R =
3∑

µ,ν=0

gµνRµν (14)

is called the Ricci scalar, where gµν is the inverse 4× 4 tensor to gµν . We shall not
use Einstein’s summation rule in this paper (because of (26) below). The metric
tensor gµν = gµν(x

0, x1, x2, x3) depends, in general, on time x0 and three spatial
coordinates x1, x2, x3.

Multiplying (11) by gµν and summing over all µ and ν, we obtain by (14) that

0 =
3∑

µ,ν=0

gµνRµν −
1

2
R

3∑
µ,ν=0

gµνgµν = R− 1

2
R

3∑
µ=0

δµµ = R− 1

2
4R,

where δµν is the Kronecker delta. Thus, R = 0 and Einstein’s equations (11) can be
rewritten into a shorter classical form

Rµν = 0. (15)

Their solution is, for instance, the well-known exterior Schwarzschild metric [13,
p. 284]. In this paper, we shall look for other exact solutions, when the space com-
ponent of space-time is Euclidean. To this end, we first introduce the Christoffel
symbols (also called the connection coefficients). The reason is that all entries of
the Ricci tensor (15) are defined by means of the Christoffel symbols (cf. (19), (25),
and (30) bellow). Therefore, the metric tensor is supposed to be twice differentiable
with respect to all four variables.

Throughout this paper we shall assume that the spatial part of the 4 × 4 met-
ric tensor is the following constant 3 × 3 diagonal tensor associated to the three-
dimensional Euclidean space

gαβ = gαβ = −δαβ and let gα0 = g0β = gα0 = g0β = 0 for all α, β = 1, 2, 3.
(16)

That is,

gµν =


g00 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (17)
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However, g00 = g00(x0, x1, x2, x3) may depend on all four coordinates x0, x1, x2, x3,
in general, and for the determinant g of gµν we have

g := −g00. (18)

Theorem 2. Assume that the metric tensor gµν = gµν(x
0, x1, x2, x3) satisfying

Einstein’s equations (15) is of the form (17). Then

g00 = g00(x0),

i.e., it is independent of x1, x2, x3.

The proof will be successively given in the next three sections.

5. Calculation of the Christoffel symbols

The Christoffel symbols of the first kind (in the covariant form, i.e. only with
lower indices) are defined as follows

Γµνκ =
1

2
(gµν,κ + gκµ,ν − gνκ,µ), µ, ν,κ = 0, 1, 2, 3, (19)

where for simplicity we define gµν,κ = ∂gµν/∂x
κ to reduce notation. This is altogether

4 × 4 × 4 = 64 entries. However, since the metric tensor is symmetric (12), we get
by (19) the following symmetry in the last two indices

Γµνκ =
1

2
(gµκ,ν + gνµ,κ − gκν,µ) = Γµκν , (20)

i.e., there are only 4× 10 = 40 independent Christoffel symbols.
First, we prove that these symbols will be zero for the case (16) if at most one

index is zero. Since all nondiagonal entries of the metric tensor are zeros (17) and
the time derivative of a constant is zero as well, we obtain that:

(1) There are 6 = 1 + 2 + 3 independent components of Γ0αβ due to the symme-
try (20),

Γ0αβ =
1

2
(g0α,β + gβ0,α − gαβ,0) = 0 for α, β = 1, 2, 3.

(2) There are 9 = 3× 3 independent components of Γα0β ,

Γα0β =
1

2
(gα0,β + gβα,0 − g0β,α) = 0 for α, β = 1, 2, 3. (21)

(3) There are 18 = 3× 6 independent components of Γαβγ ,

Γαβγ =
1

2
(gαβ,γ + gγα,β − gβγ,α) = 0 for α, β, γ = 1, 2, 3. (22)
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Second, we prove that the Christoffel symbols will be, in general, nonzero for the
case (16) if at least two indices are zero. Hence, by (12), (16), (17), and (19) we have
only the following nontrivial cases:

(4) There are 4 component such that

Γ0κ0 =
1

2
(g0κ,0 + g00,κ − gκ0,0) =

1

2
g00,κ = −1

2
g,κ for κ = 0, 1, 2, 3. (23)

(5) Finally, for the remaining 3 components we get

Γα00 =
1

2
(gα0,0 + g0α,0 − g00,α) =

1

2
(−g00,α) =

1

2
g,α for α = 1, 2, 3. (24)

So altogether we have evaluated

6 + 9 + 18 + 4 + 3 = 40

symbols Γκµν , but only 7 of them are nonzero, in general.

The Christoffel symbols of the second kind are defined as follows

Γµνκ =
3∑

λ=0

gµλΓλνκ . (25)

However, since in our case the metric tensor is diagonal (17), we find that

Γµνκ = gµµΓµνκ , µ, ν,κ = 0, 1, 2, 3. (26)

Thus, by (16), (18), and (23)–(25) we get

Γ0
κ0 = −g,κ

2g
for κ = 0, 1, 2, 3, (27)

where g does not vanish, and

Γα00 = −1

2
g,α for α = 1, 2, 3. (28)

By (20) and (25) we obtain the symmetry in the last two indices of the Christoffel
symbols of the second kind,

Γµνκ = Γµκν . (29)

6. Calculation of the Ricci tensor

Using the definition of the Ricci tensor [13], [17], [23]

Rµν =
3∑

κ=0

(
Γκ

µν,κ − Γκ
µκ,ν +

3∑
λ=0

(
ΓλµνΓ

κ
λκ − ΓλµκΓκ

νλ

))
, µ, ν = 0, 1, 2, 3, (30)
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for the entry R00 we get

R00 =
3∑

κ=0

(
Γκ

00,κ − Γκ
0κ,0 +

3∑
λ=0

(
Γλ00Γκ

λκ − Γλ0κΓκ
0λ

))
. (31)

For the first part of (31) with derivatives we obtain by (28) that

3∑
κ=0

(
Γκ

00,κ − Γκ
0κ,0
)

=
(
Γ0

00,0 − Γ0
00,0

)
+

3∑
α=1

Γα00,α = −1

2

3∑
α=1

g,αα , (32)

since by (21), (22), and (26) we have

Γαλα = 0 for α = 1, 2, 3, λ = 0, 1, 2, 3.

From this for the second part of (30) with nonlinearities we have by (18) and (27)–(29)
that

3∑
κ=0

3∑
λ=0

(
Γλ00Γκ

λκ−Γλ0κΓκ
0λ

)
=

3∑
λ=0

Γλ00Γ0
λ0−

3∑
λ=0

Γλ00Γ0
0λ−

3∑
α=1

Γ0
0αΓα00 =

1

4

3∑
α=1

g,α
g
g,α.

Substituting this and (32) into (31), we obtain by (15) the following second order
partial differential equation for the unknown function, see (18),

g = g(x0, x1, x2, x3),

namely,

R00 =
3∑

α=1

(
g,αα −

(g,α)2

2g

)
= 0 (33)

with the standard Laplace operator and the squared gradient.

Now, we show that for the metric tensor (17) the entries R0β of the corresponding
Ricci tensor are identically zeros without using (15). This means that we do not get
any further condition on g. By (30), (29), (27), and the equality Γµνκ = 0 if at most
one index is zero we obtain that

R0β =
3∑

κ=0

(
Γκ

0β,κ − Γκ
0κ,β +

3∑
λ=0

(
Γλ0βΓκ

λκ − Γλ0κΓκ
βλ

))
= Γ0

0β,0 − Γ0
00,β + Γ0

0βΓ0
00 − Γ0

00Γ0
β0 = Γ0

0β,0 − Γ0
00,β

= −1

2

(g,β
g

)
,0

+
1

2

(g,0
g

)
,β

= −1

2

g,β0 g − g,β g,0 − g,0β g + g,0 g,β
g2

= 0, β = 1, 2, 3.
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Finally, we find that

Rαβ =
3∑

κ=0

(
Γκ

αβ,κ − Γκ
ακ,β +

3∑
λ=0

(
ΓλαβΓκ

λκ − ΓλακΓκ
βλ

))
= Γ0

αβ,0 − Γ0
α0,β + Γ0

αβΓ0
00 − Γ0

α0Γ0
β0 = −Γ0

α0,β − Γ0
α0Γ0

β0

=
(g,α

2g

)
,β
− 1

4

g,α
g

g,β
g

=
g,αβ g − g,α g,β

2g2
− g,α g,β

4g2

=
g,αβ
2g
− 3g,α g,β

4g2
, α, β = 1, 2, 3.

From this and (15) we obtain 6 partial differential equations different than those
in (33), namely,

g,αβ −
3g,α g,β

2g
= 0, α, β = 1, 2, 3. (34)

7. Establishing the metric tensor

Proof of Theorem 2. First, we show that a general solution of the system (33)–(34)
is independent of the space variables x1, x2, x3. Setting β := α and summing (34)
over all α, we obtain

3∑
α=1

(
g,αα −

3(g,α)2

2g

)
= 0. (35)

Subtracting this from (33) and multiplying by g gives

3∑
α=1

(g,α)2 = 0

which yields
g,1 = g,2 = g,3 = 0. (36)

Hence, a general solution is of the form

g = g(x0), i.e. g00 = g00(x0).

The proof is completed. �

So we see that the potential g00 may depend on time. This result may have
applications in cosmology, see e.g. [16].

The class of all solutions of (33)–(34) is therefore not too rich when compared
with (37) below and (18).

According to [23, p. 403], it is convenient to define a new coordinate

t :=

∫ √
−g(x0)dx0.
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Then (dt)2 = −g(x0)(dx0)2 and

g = g(t, x1, x2, x3) ≡ −1 (37)

solves all partial differential equations (33)–(34). This solution leads to the Minkowski
metric known from the Special Theory of Relativity [17], [23].

8. Final remark

From (35) and (36) we observe that g satisfies the Laplace equation. Let us
employ the standard spherical coordinates (r, θ, ϕ), ϕ ∈ [0, 2π), θ ∈ [0, π], i.e.,
x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ. The Laplace operator in the
these coordinates reads (see [21, Sect. 7.2])

∆g =
∂2g

∂r2
+

2

r

∂g

∂r
+

1

r2

(∂2g

∂θ2
+ cotan θ

∂g

∂θ
+

1

sin2 θ

∂2g

∂ϕ2

)
.

The sum in parenthesis on the right-hand side is zero for the spherically symmetric
case. The coordinates of grad g in directions r, θ, ϕ are

∂g

∂r
,

1

r

∂g

∂θ
,

1

r sin θ

∂g

∂ϕ

and thus the second and third terms also vanish. Substituting this into (33), we get
the following homogeneous nonlinear ordinary differential equation

g′′ +
2

r
g′ − (g′)2

2g
= 0, (38)

where prime denotes the differentiation of g with respect to r. Note that solutions
of (38) are denoted by the same symbol g as in (33), since no ambiguity can arise.

The natural initial conditions

g(0) = 1 and g′(0) = 0

yield again the Minkowski metric. But since coefficients in (38) are not Lipschitz
continuous, no uniqueness is guaranteed. For instance, the problem y′ − √y = 0,
y(0) = 0, has the trivial solution y ≡ 0 and also another solution y(x) = 1

4
x2.
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Abstract: This paper presents some archive documents illustrating the ne-
gotiations for the professorship of theoretical physics at the former German
Karl-Ferdinand University in Prague (GU), which became vacant with the
retirement of Ferdinand Lippich (1838–1913) on 30 September 1910. Three
candidates were nominated for the vacant professorship by the professorial
board of the Faculty of Philosophy of GU: in first place Albert Einstein (ex-
traordinary professor of theoretical physics at the University of Zurich), in
second place Gustav Jaumann (ordinary professor of general and technical
physics at the German Technical University in Brno) and in third place Emil
Kohl (private docent of physics at the University of Vienna and actuary of the
Vienna Academy of Sciences).
The proposal was sent to the Ministry of Culture and Education in Vienna (as
the Czech lands, with their capital Prague, were part of the Austro-Hungarian
Monarchy at that time). The Ministry asked for a confidential comment on
the proposal from Ernst Mach, at that time professor of philosophy at the Uni-
versity of Vienna, who had been professor of experimental physics in Prague
in 1867–1895. E. Mach supported the selection and order of the nominated
candidates. So did F. Lippich in a personal letter to the Ministry. However
the Ministry decided to offer the professorship first to an inland candidate,
G. Jaumann, which was not an unusual procedure. Jaumann initially wel-
comed the offer as merited appreciation of his talents and specialization, but
eventually refused it because his claim for a higher salary was not met. Only
then did the Ministry offer the professorship to A. Einstein, who accepted the
offer without any extraordinary demands and was appointed ordinary (full)
professor (and head of the Institute) of theoretical physics at GU by a decision
of the Emperor Franz Joseph of 6 January 1911, effective from 1st April 1911.
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1. Introduction

In this article, we will focus on the negotiations for a new professorship of the-
oretical physics at the German Karl-Ferdinand University in Prague (k. k. deutsche
Karl-Ferdinands Universität in Prag, hereinafter abbreviated as German Univer-
sity, GU), which became vacant with the retirement of professor Ferdinand Lippich
on 30 September 1910. To supplement the already existing historical literature (or to
recall lesser-known circumstances of this history), we will present the statements of
Ernst Mach and Ferdinand Lippich on the proposal for the new professorship drawn
up by the professorial board of the Faculty of Philosophy of GU and submitted to
the Ministry of Culture and Education in Vienna (k. k. Ministerium für Cultus und
Unterricht), in which Albert Einstein was strongly proposed as the first candidate.
We will also document the position of Gustav Jaumann, the inland candidate pro-
posed by the professorial board for the professorship in secundo loco, who was offered
the professorship by the Ministry as the first, who, however, eventually declined the
offer.

The article is based mostly on written documents preserved in the collection of
the Vienna Ministry of Culture and Education in the National Archives in Prague.
Quoted are also three items of Ernst Mach’s correspondence held in the Archives of
the Deutsches Museum in Munich. The broader context of the topic (and references
to other historical sources and literature) can be found e.g. in articles [1], [2] or in
publication [3]. A. Einstein, his stay and work in Prague (Bohemia), is the subject
e.g. of a new monograph [4].

The historical documents are quoted in their German original with the preserva-
tion of the period German spelling.

2. Vacancy of the professorship of mathematical physics at GU and the
proposal of the Faculty of Philosophy for its new filling

2.1. Announced retirement of Ferdinand Lippich

On 4 October 1908, Ferdinand Lippich (1838–1913), professor of mathematical
physics at the Faculty of Philosophy of GU, reached the age of 70, which was the legal
limit for university professors in the Austro-Hungarian Monarchy to retire perma-
nently (after the completion of the school year). In recognition of F. Lippich’s merits,
he was extended by one “honorary year” by a decree of the Ministry of Culture and
Education of 22 January 1909. By the same decree, the Ministry invited the Faculty
of Philosophy of GU to propose a trienium of candidates for the professorship of
mathematical physics, which would become vacant on 1st October 1910.

F. Lippich had held the professorship from its establishment in 1872. It was
an ordinary (full) professorship. It already had at its disposal a modest Insti-
tute (k. k. mathematisch-physikalisches Cabinet) with one auxiliary assistant (wis-
senschaftliche Hilfskraft, a post held by Emil Nohel from 1st October 1910) and
a Seminar, which was shared with the professorship of mathematics (at that time
held by George Pick). The Institute and the Seminar were located in the building
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of the Natural Science Institutes of GU in Prague, Viničná Street (Weinberggasse);
the teaching, however, was still partly carried out in premises of GU in the Prague
Clementinum (the former Jesuit college).

2.2. Proposal of the professorial board

At the meeting on 27 January 1910, the professorial board of the Faculty of Phi-
losophy of GU appointed a three-member committee to prepare a proposal of suitable
candidates for the professorship of mathematical physics. Members of the committee
were Anton Lampa (ordinary professor of experimental physics), Georg Pick (ordi-
nary professor of mathematics), and Viktor Rothmund (extraordinary professor of
physical chemistry). Ferdinand Lippich decided to refrain from the negotiations of his
successor. The main responsibility for the proposal thus shouldered A. Lampa who
was appointed professor at GU only a year before that, in 1909 when he succeeded
Mach’s successor at the professorship of (experimental) physics at GU Ernst Lecher.

In the proposal submitted by the committee to the professorial board, dated
April 1910, the following physicists were nominated for the professorship (with
a newly proposed title) of theoretical physics: Albert Einstein, a 31-year-old ex-
traordinary professor of theoretical physics at the University of Zurich, in first place;
Gustav Jaumann, a 47 year-old ordinary professor of general and technical physics at
the German Technical University in Brno, in second place; and Emil Kohl, a 48-year-
old private docent of physics at the University of Vienna and actuary of the Vienna
(Imperial) Academy of Sciences, in third place. The main criterion on which the
candidates were selected was their scientific contribution to the modern theoretical
physics, i.e. to the field of electromagnetism. In the proposal of the committee it
was worded as follows:

Die moderne theoretische Physik hat die kräftigen Impulse aus der Elek-
trizitätslehre empfangen. Durch Maxwell ist die Optik als ein Spezialka-
pitel in die Elektrizitätslehre eingegliedert worden. Glänzende Experi-
mentaluntersuchungen von Boltzmann, Hertz und anderen haben gezeigt,
welche Fruchtbarkeit den kühnen theoretischen Spekulationen Maxwells
innewohnt, und die Berechtigung des Gedankens erwiesen, die optischen
Erscheinungen, die bis dahin mechanisch gedeutet wurden, als elektro-
magnetische Vorgänge aufzufassen. Dieser erfolgreiche Schritt legte in
weiterer Konsequenz das allgemeinere Problem des Verhältnisses der Me-
chanik zur Elektrizitätslehre nahe. Dieses Problem nimmt in der neuesten
Zeit die Aufmerksamkeit der theoretischen Physik in gleich hohem Masse
in Anspruch, wie zu Beginn der Maxwell’schen Gedankenbildungen. Wäh-
rend aber damals die Mechanik das Fundament bildete, von welchem
aus man in das fremdartige Gebiet der Elektrizität einzudringen bemüht
war, ist nun, am Ende einer langen und an weittragenden Entdeckungen
reichen Entwicklung der Standpunkt verschoben: jetzt bildet die Elek-
trizitätslehre den Ausgangspunkt für alle das genannte Problem betref-
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fenden Ueberlegungen. Dieses Problem ist das centrale Problem der mo-
dernen theoretischen Physik und wird es auf lange hinaus bleiben. Jeder
Versuch, dieses Problem seiner Lösung näher zu bringen, muss von Fra-
gen der elektromagnetischen Theorie ausgehen; jeder solche Versuch hat
die weitgehendsten, das gesamte System der theoretischen Physik berüh-
renden Konsequenzen, so dass man wohl, ohne sich einer Uebertreibung
schuldig zu machen, sagen darf, dass die weitere Entwicklung der theo-
retischen Physik durchaus an die Bearbeitung des hier berührten Problems
gebunden ist.
In Berücksichtigung dieser Sachlage ist die Kommission zu der Ansicht
gelangt, der Fakultät zu empfehlen, nur solche Forscher in den Beset-
zungsvorschlag aufzunehmen, welche in ihren Arbeiten zu diesem wichtig-
sten Problem der modernen theoretischen Physik Stellung genommen ha-
ben und daher die Gewähr bieten, dass unserer Universität ein ihrer Tra-
dition entsprechender Anteil an der Weiterentwicklung der theoretischen
Physik gesichert bleibt.1)

The nomination of A. Einstein (a foreigner and the youngest of the three) for
the professorship in the first place was justified in the proposal by his outstanding
scientific achievements and his leadership in the field of modern theoretical physics.
It was emphasized that his appointment would contribute significantly to the prestige
of GU in the field of science.

The committee’s proposal was unanimously approved by the professorial board
and in a copy forwarded to the Ministry of Culture and Education in Vienna through
the Dean’s Office of the Faculty, with a covering letter of 23 April 1910.2)

2.3. Decision to ask three external scholars for their opinions

The three candidates for the professorship of theoretical physics at GU were pre-
sented and compared without a sign of doubt in the proposal that the committee
tabled to the professorial board. The way to that proposal, however, was not an easy
one. Opinions of the committee members on Gustav Jaumann and his convoluted
work diverged. It was at the instance of Viktor Rothmund (who was Jaumann’s
successor at the professorship of physical chemistry at GU and his younger by seven
years) that the committee decided to ask three external scholars for their expert
opinion on Jaumann, namely Ernst Mach (professor of philosophy at the University
in Vienna), Max Planck (professor of theoretical physics at the University in Berlin)
and Woldemar Voigt (professor of theoretical physics at the University in Göttingen).
Anton Lampa was entrusted to address Ernst Mach (who was his former teacher
and colleague at the University in Vienna) in the matter. Mach was professor of
(experimental) physics in Prague in 1867–1895, and Jaumann was one of his stu-
dents and assistants at GU; it was also Mach who presented (and recommended for
publication) most of Jaumann’s papers to the Vienna Academy of Sciences (before
Jaumann’s election inland corresponding member of the Academy in 1905).
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Lampa outlined the task and work of the committee to Mach in a personal letter
of 9 February 1910. He did not contest Jaumann’s talent, and confessed a sort of
support to his way of thinking, but expressed some scepticism towards Jaumann’s
theoretical physical constructs. Mach’s expert view of Jaumann and his work was to
help Lampa (and the whole committee) assess Jaumann’s achievements in the field
of modern physics correctly. Lampa’s handwritten letter to Mach reads as follows:

Prag II 1594, Weinbergasse 3,
am 9. Februar 1910.
Hochgeehrter Herr Professor!
Die Frage der Wiederbesetzung der Lehrkanzel von Hofrat Lippich ist nun
aktuell geworden. Lippich hat es abgelehnt in die Kommission einzutreten,
so dass ich nun der einzige Physiker in dieser Kommission bin. Außer
mir gehören ihr an Pick und Rothmund (physik. Chemie). Die Ver-
antwortung, welche auf mir liegt, ist durch die Resignation von Lippich
doppelt so groß als sie es sonst wäre. Ich habe es daher mit Freude
begrüßt, als von Rothmund der Antrag gestellt wurde, bezüglich Jaumanns
Äußerungen fremder Gelehrter einzuholen; wir haben uns geeinigt, Sie,
Planck und Voigt zu bitten, uns Ihre Ansichten mitzuteilen. Im Ein-
verständnis mit der Kommission darf ich dem Schreiben an Sie mehr
persönlichen Charakter verleihen, indem ich Ihnen gegenüber die speziellen
Fragen zur Besprechung bringe, welche mir für die Beurteilung von Jau-
manns Leistungen von besonderer Wichtigkeit erscheinen. Ich brauche
nicht zu versichern, dass mir die hohe Begabung Jaumanns außer Zweifel
scheint und dass mir seine ganze Denkart sympathisch ist. Ich betrachte
als Ideal der theoretischen Physik die rein phänomenologische Darstel-
lung, wie sie etwa in der Thermodynamik vorliegt. Jaumann geht von
dem Wunsche aus, eine solche phänomenologische Darstellung für die
Elektrizitätslehre und was sich mit ihr in Zusammenhang bringen lässt,
aufzubauen. Er verwirft also Atomtheorie und Elektronik und sucht die
Feldgleichungen Maxwell’s zu erweitern, so dass sie auch zur Beschrei-
bung nicht superpositorischer Vorgänge ausreichen. Nun beginnt aber,
wie es ja auch nicht anders sein kann, die Bildung von Hypothesen zur
Erreichung dieses Zieles. Gegen diese Hypothesen, die schrittweise einer
immer weiter gehende Vervollständigung und Ergänzung erfahren, habe
ich nun zweierlei einzuwenden.
1. Erkenntnistheoretisch sehe ich keinen Unterschied gegen das Ver-
fahren der Elektronentheorie. Hier werden Körperchen eingeführt, die
sich der Erfahrung entziehen, bei Jaumann Zustandsveränderungen, die
sich gleichfalls der Erfahrung entziehen. Welches Verfahren man ein-
schlagen will, ist mehr Geschmackssache. Die Rechtfertigung liegt im
Erfolg. Und da scheint mir bei aller Abneigung gegen die Elektronik
vorderhand diese überlegen.
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2. Vom physikalischen Standpunkt habe ich gegen Jaumanns Hypothesen
den Einwand zu erheben, dass zu ihrer Stütze keine anderen Erfahrungen
angeführt werden können, als eben diejenigen, zu deren Interpretation sie
dienen sollen. Die erste Hypothese Jaumanns war die Veränderlichkeit
der Dielektrizitätskonstante durch die elektrischen Kräfte selbst. Diese
Hypothese schiene mir sehr berechtigt, wenn man jemals die Kapazität
eines Kondensators von der Potentialdifferenz seiner Belegungen abhängig
gefunden hätte. Die dielektrische Hysteresis kann hier nicht herangezogen
werden, denn bei sehr raschen Schwankungen der elektrischen Kraft wird
sie Null. Mit dieser Hypothese findet aber Jaumann nicht sein Auslan-
gen. Es muss zwei neue Energiearten potentieller und lebendiger Art (ich
will das Wort kinetisch vermeiden) einführen, neben dem Leitungs- und
Verschiebungsstrom erscheint ein sogenannter chemischer Strom zur Ver-
vollständigung der Feldgleichungen Erst jetzt gelingt es, das Wesentliche
der Erscheinungen wiederzugeben.
Eine Rechtfertigung dieser Hypothesen ist, glaube ich, nur durch einen
quantitativen Vergleich seiner theoretischen Resultate mit der Erfahrung
zu liefern und durch die Vorhersage neuer Erscheinungen. Den Vergleich
hat Jaumann ganz unzureichend geführt, Erscheinungen in genügend gro-
ßer Zahl vorhergesagt, aber leider nicht eine einzige aufgesucht.
Ich befinde mich daher in der unangenehmen Situation, die Intentionen
Jaumans zu billigen, seine wissenschaftliche Phantasie und sein architek-
tonisches Talent bewundern zu müssen, ohne einen Anhaltspunkt für ein
gerechtes Urteil zu haben. Ich habe es mir sauer genug werden lassen, in
seine Gedanken trotz des mathematischen Gestrüppes, das übrigens nicht
gar so arg ist, einzudringen. Ich fürchte aber sehr, dass es mir nicht in
zureichendem Maß gelungen ist. Und so habe ich das Bedenken, einerseits
die Jaumann’sche Theorie aus prinzipiellen Gründen zu überschätzen,
anderseits wegen Mangels einer erfahrungsmäßigen Rechtsfertigung ihr
mehr den Charakter einer geistreichen naturphilosophischen Konstruk-
tion beizulegen. Aus diesem Grunde wäre ich Ihnen für ein aufklärendes
Wort sehr dankbar.
Ihre Antwort ist zunächst nur für den Gebrauch in der Kommission bes-
timmt. Doch erbitte ich mir die Ermächtigung, gegebenenfalls in der
Fakultät von ihr Gebrauch machen zu dürfen.
Für Ihren freundlichen Gruß durch Marty herzlichen Dank. Ich hoffe,
dass Sie Sich recht wol befinden und dass Sie die Mühe, die ich Ih-
nen mit dieser Anfrage mache, nicht allzu lästig empfinden werden. Ich
freue mich schon sehr, Sie in einigen Wochen persönlich begrüßen zu
können und Ihnen dann von dem weiteren Fortgang der Angelegenheit zu
berichten.
Mit herzlichsten Grüßen bleibe ich Ihr in ausgezeichnetster Hochachtung

ergebener A Lampa3)
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Next letter of A. Lampa to E. Mach, dated 18 February 1910, documents that
Mach granted Lampa’s request. Mach’s opinion, as well as the opinions of Voigt
and Planck influenced then the final proposal of the committee. It seems that there
was a general agreement on Jaumann’s talent, reproached to him was a lack of his
own criticality (noticeable namely in his latest work). Interesting is Lampa’s note
of professor Pick and his attitude towards (support to) Jaumann’s candidacy to the
professorship. Lampa also mentioned that the committee had agreed to approach
Jaumann and ask him if he would possibly accept the professorship in Prague.

Prag, am 18 Februar 1910.

Hochgeehrter Herr Professor!
Ich danke Ihnen sehr für das ausführliche Schreiben, welches Sie mir
in der Angelegenheit Jaumann zu senden so gütig waren. Planck und
Voigt haben auch geschrieben. Beide sprechen mit Anerkennung von
J.’s Begabung, beide tadeln den Mangel an Selbstkritik, der namentlich
in den letzten Arbeiten zutage tritt. So nähern sich diese Urteile in
gewissem Sinne meinem Eindruck, dass sich J. die Vergleichung mit
der Erfahrung sehr leicht macht. Ihre Auseinandersetzungen haben mich
bezüglich der Methodik Jaumanns beruhigt und so konnte ich in der Kom-
mission wärmer für J. eintreten, als mir dies sonst möglich gewesen wäre.
Einen besonders warmen Anwalt hat J. in Pick, der zwar manchen Seiten
von J.’s Persönlichkeit recht kritisch gegenübersteht, sich aber mit Nach-
druck für ihn einsetzt. So haben wir denn in der letzten Kommissions-
sitzung einstimmig beschlossen, an J. mit der Frage heranzutreten, ob er
einem Rufe nach Prag Folge leisten würde.
Indem ich Sie bitte, diese Mitteilungen als vertrauliche anzusehen, bleibe
ich, nochmals herzlich dankend, Ihr Sie aufrichtigst hochschätzender und
Ihnen treu ergebener

A Lampa4)

3. Position of the Vienna Ministry on the proposal of the GU Faculty
of Philosophy

3.1. The Ministry’s preference for an inland candidate

The Ministry of Culture and Education in Vienna decided to offer the profes-
sorship of theoretical physics at GU first to the inland candidate G. Jaumann. His
scientific achievements appeared to the Ministry to be significant, and his academic
positions (Dean of the General Department in 1903–1905 and of the Department
for Technical Chemistry in 1908–1910 at the German Technical University in Brno)
and membership in scientific academies (member of the Kaiserliche Leopoldinisch-
Carolinische deutsche Akademie der Naturforscher since 1891 and corresponding
inland member of the Vienna Academy of Sciences, its Mathematical and Science
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Department, since 1905) also played in his favour. In addition, Jaumann’s appoint-
ment at GU would have opened up a post at the German Technical University in
Brno for one of the young Viennese physicists.

This way of thinking by the Ministry was not exceptional; the Ministry also
gave preference to inland candidates when filling other teaching positions at the
Austro-Hungarian universities, for example when appointing A. Lampa as professor
of experimental physics at GU in 1909 (when the candidate nominated at the first
place by the professorial board of the Faculty of Philosophy was German physicist
Johannes Stark) [5].

3.2. Statement of Ernst Mach for the Ministry

Before the Ministry of Culture and Education approached G. Jaumann to offer
him the Prague professorship, it also asked for an opinion on the proposal of the
GU Faculty of Philosophy from Professor Ernst Mach. As it was already mentioned,
Mach had been a professor of (experimental) physics in Prague for 28 years and
Jaumann was one of his students and assistants at the Institute of Physics at GU.
In a letter dated 18 May 1910, the Minister of Culture and Education Karl Stürgkh
briefly informed Mach about the proposal of the GU Faculty of Philosophy for a new
professorship after F. Lippich and asked for his personal, confidential opinion on the
proposal. Specifically, he asked Mach to comment on whether the scientific results
of the first-place foreign nominee, Dr. Einstein, could be considered so outstanding
in comparison with the scientific results of Professor Jaumann that the acquisition
of Einstein for the GU would be particularly desirable. In the draft letter noted on
the ministerial file, this was phrased in words:

Ich ersuche Eure // sich über diesen Personalvorschlag vertraulich außern
und sich hiebei namentlich darüber aussprechen zu wollen, ob die wissen-
schaftlichen Leistungen des an erster Stelle genannten Ausländers Dr Ein-
stein gegenüber jenen des Professors Jaumann als derart hervorragend er-
achtet werden können, daß die Gewinnung des Ersteren für die Deutsche
Universität in Prag als empfehlenswert besonders wünschenswert dar-
stellen würde.5)

Ernst Mach replied by letter of 22 May 1910. He described the proposal for the
professorship – the selection and order of the proposed candidates – as economical,
fair and hardly contestable. He stated that A. Einstein undoubtedly stood in the
first rank among the younger physicists of mathematical orientation. He praised
Einstein’s formulation of the principle of relativity, saying that it had been received
with the greatest interest by physicists and had also found a supporter in the leading
mathematician Hermann Minkowski. He added that, given the small number of
mathematical physicists in the Austro-Hungarian Monarchy, Einstein’s nomination
for the professorship in question was no surprise. In experimental physics however,
he continued, the situation was different; the Monarchy had no shortage of excellent
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experimental physicists and calling upon a foreigner to fill such a vacant professorship
would be discouraging and would weigh heavily on the younger generation in parti-
cular. Mach also expressed his appreciation of G. Jaumann. He described him as
one of the very talented young Austrian physicists. Even if Einstein’s reputation was
greater than Jaumann’s at that time, he added, this could be reversed in the future.
He remarked that Jaumann had adversely affected his professional career by taking
a stern stand against the prevailing theories, “which is always dangerous for a young
person”; Einstein cleverly managed to avoid this. At the same time, Mach expressed
surprise that Jaumann aspired to a poorly endowed teaching chair of mathematical
physics in Prague, while at the Technical University in Brno he had a richly equipped
collection of instruments for experimentation. He tried to explain this by saying that
Jaumann probably did not see the right response in his Brno audience, or that he
wanted to switch to mathematical physics, “which he is no stranger to”, and spend
more time on his own research. Mach concluded by expressing his great pleasure
that the proposal in question did not omit the Viennese physicist Emil Kohl, a quiet
and solid worker in mathematical physics. The full text of Mach’s typed statement
was as follows (the underlining of words in the text is original).

Hohes Ministerium f C u U!
In Beantwortung der h Zuschrift vom 18/V ’10 ad Z 17.589 ex 1910 beeile
ich mich ergebenst mitzuteilen:
Der Vorschlag Io A Einstein

IIo G Jaumann
IIIo E Kohl

scheint mir sehr billig, gerecht und kaum angreifbar.
Unter den jüngeren Physikern mathematischer Richtung steht Einstein
zweifellos in erster Reihe durch Aufstellung des fruchtbaren Relativitäts-
prinzipes, welches auch von der Gesammtheit der Physiker mit dem gröss-
ten Interesse aufgenommen wurde. Dieses Prinzip hat auch das Glück
gehabt in einem so hervorragenden Mathematiker, wie H Minkowski, einen
eifrigen Vertreter zu finden. Nimmt man hinzu, dass die Zahl der mathe-
matischen Physiker in Oesterreich nicht sehr gross ist, so könnte die
Berufung Einsteins kaum Befremden erregen.
Etwas anders verhält es sich in Bezug auf die Physiker experimenteller
Richtung. Oesterreich ist nicht arm an ausgezeichneten Leuten dieser
Art, so dass die Berufung eines Fremden beinahe notwendig als eine
Entmutigung unserer Landsleute empfunden werden müsste, welche bei
den geringen Aussichten unserer jungen Collegen besonders schwer ins
Gewicht fallen würde. Zu diesen jüngeren, nach meiner Meinung hochbe-
gabten Leuten, gehört G Jaumann. Wenn heute auch der Ruf Einsteins
grösser ist, so kann sich dieses Verhältnis doch umkehren. Jaumann
hat seine Laufbahn dadurch nicht gerade günstig beeinflusst, als er seine
Opposition gegen herrschende Theorien ziemlich schroff hervorgekehrt
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hat, was namentlich für einen jungen Mann immer etwas gefährlich ist.
Einstein, ebenfalls in der Opposition, wusste das klug zu vermeiden. Be-
fremdlich ist mir bei Jaumann, dass er die karg dotirte Lehrkanzel der
mathematischen Physik in Prag anstrebt, während ihm in Brünn eine
reich ausgestattete Instrumentensammlung für Experimente zur Verfü-
gung steht. Vielleicht findet er in seinem Brünner Auditorium nicht die
richtige Resonanz; oder vielleicht wünscht er zur mathematischen Physik
überzugehen, die ihm ja nicht fremd ist, um mehr Arbeitszeit für eigene
Untersuchungen zu gewinnen.
Sehr erfreut hat mich, dass man Emil Kohl nicht vergessen hat, einen
stillen soliden Arbeiter auf dem Gebiete der mathematischen Physik, der
einstweilen den Dienst als Aktuar der Akademie der Wissenschaften über-
nommen hat.
Hiermit glaube ich dem h Ministerium alle Anhaltspunkte zu Beurteilung
der Situation gegeben zu haben, die ich liefern kann.
Wien am 22. Mai 1910 Ehrerbietigst

[stamped signature] Dr Ernst Mach6)

Let us add that E. Mach and A. Einstein had exchanged a pair of letters and
publications in 1909. Under the term of that correspondence Einstein expressed his
deep respect for Mach. Specifically, in the letter of 9 August 1909 Einstein wrote to
Mach:

Sie haben auf die erkenntnistheoretischen Auffassungen der jüngeren Phy-
siker-Generation einen solchen Einfluß gehabt, daß sogar Ihre heutigen
Gegner, wie z. B. Herr Planck, von einem der Physiker, wie sie vor eini-
gen Jahrzehnten im Ganzen waren, ohne Zweifel für “Machianer” erklärt
würden.7)

3.3. Position of Ferdinand Lippich (a supplementary explanation)

F. Lippich explained his refusal to participate in the negotiations of his successor
at GU in a letter of 19 May 1910; the letter was intended to prevent the possible mis-
understanding of his position in Vienna (the addressee of the letter is not specified).
Lippich stated that he had not wanted to influence his colleagues in the selection of
his successor. He approved of the nomination of A. Einstein as a candidate for the
professorship in first place, adding that Einstein would be a great asset to GU in
scientific terms. The full text of Lippich’s typewritten letter was as follows.

Prag den 19. Mai 1910.
Hochverehrter Herr Hofrat!
Es ist Ihnen vielleicht aufgefallen, dass unter den Namen der Mitglieder
der Kommission, welche den Besetzungsvorschlag für die nach mir erle-
digte Lehrkanzel erstattet hat, mein Name fehlt. Es liegt mir nun sehr viel
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daran, dass dieser Umstand an massgebender Stelle nicht falsch beurteilt
werde und ich bitte Sie daher mir zu gestatten, dass ich Ihnen den von
mir eingenommenen Standpunkt darlegte.
Als ich erklärte die Wahl in die Besetzungskommission nicht annehmen
zu können und das Kollegium bat, von meiner Wahl absehen zu wollen,
geschah das einzig und allein nur deshalb, weil ich es vermeiden wollte,
den Besetzungsvorschlag möglicherweise in einer Weise beeinflusst zu
haben, dass er die Meinung meiner engeren Fachkollegen nicht mehr ganz
zum Ausdruck bringt. Ein Kompromiss ist ja bei geteilten Ansichten das
gewöhnliche Resultat und ich wollte nicht mit dem Gefühle scheiden, dass
durch ein solches mein Nachfolger nicht jene Persönlichkeit wäre, die das
Kollegium vor Allen anderen gewünscht hat.
Nun ist der Besetzungsvorschlag so ausgefallen, dass ich demselben zus-
timmen konnte und ganz besonders mit Rücksicht auf den primo loco
vorgeschlagenen Prof. Dr. Einstein, der, wie sich in der Sitzung erklärte
und wie ich auch zur wärmsten Unterstützung dieses Vorschlages Ihnen
gegenüber hervorhe[be]n möchte, eine glänzende Errungenschaft in wis-
senschaftlicher Beziehung für die hiesige Universität sein würde.
Genehmigen Sie, verehrter Herr Hofrat die Versicherung meiner vorzüg-
lichsten Hochachtung mit der ich bin

Ihr ganz ergebener
[signature] F. Lippich8)

4. The Ministry’s negotiations with Gustav Jaumann

4.1. Offering the professorship to G. Jaumann

Although E. Mach fully supported the proposal of the professorial board of the
GU Faculty of Philosophy, his statement about Jaumann confirmed the Ministry of
Culture and Education in the conviction that the most (or sufficiently) suitable candi-
date for the professorship in question was G. Jaumann. In a letter dated 28 May 1910,
the Ministry addressed G. Jaumann. The letter informed Jaumann that the Minis-
ter, Count Karl von Stürgkh, had given his preliminary consent to the proposal to
appoint him professor of theoretical physics in Prague as of 1st October 1910, as suc-
cessor to F. Lippich, and asked whether and under what conditions Jaumann would
accept the professorship. The draft letter was originally dated 10 April 1910, but
its dispatch was delayed pending the statement of E. Mach. Simultaneously then,
in a letter dated 28 May 1910, the Ministry addressed the Moravian Governorate
in Brno with a request for information about Jaumann’s general behaviour.9) The
Governor’s statement about Jaumann, dated 7 June of that year, was complimentary
and without reservation:

Gegen den Obgenannten [Jaumann Dr. Gustav, Hochschulprofessor in
Brünn] ist während seines Aufenthaltes in Brünn weder in moralischer

155



noch in staatsbürgerlicher Beziehung etwas Nachteiliges vorgekommen.
Er ist politisch nie hervorgetreten, lebt in geordneten Vermögensverhält-
nissen und geniesst sowohl unter seinen Berufskollegen als auch in bür-
gerlichen Kreisen das grösste Ansehen und den besten Ruf.10)

4.2. Professional profile of G. Jaumann

Gustav Jaumann was born in 1863 in Karánsebes in what was then Bukovina
(now Rumania) to the family of an Austro-Hungarian military official. After fin-
ishing in 1880 a secondary school (die erste deutsche Staats-Oberrealschule) in Prag
(where the family had moved), he first studied chemistry for three years at the Ger-
man Technical University in Prague and the Technical University in Vienna. From
the school year 1883/84 he continued his studies at the Faculty of Philosophy of GU,
where he soon captured attention of professor E. Mach. From 1st January 1885,
he was appointed as an auxiliary assistant to E. Mach at the Institute of Physics
(for a remuneration of 400 guldens per year); there he began his own experimental
work in physics. In April 1890, pushed to it by professor Mach, he graduated as
Doctor of Philosophy, and within three months of the same year he also habili-
tated for experimental physics and physical chemistry; both his doctoral dissertation
and his habilitation work dealt with electrical discharges in gases and were already
published in the Proceedings of the Vienna Academy of Sciences in 1888.11) From
1st October 1890, Jaumann was promoted to full assistant at the Institute of Physics
(with a remuneration of 600 guldens per year). As Mach’s full assistant, from the
school year 1890/91 he conducted practical exercises in experimental physics for
teacher candidates and medical students. He also collaborated with professor Mach
on a secondary school textbook of natural history (Grundriss der Naturlehre für
die oberen Classen der Mittelschulen, first edition in 1890); Jaumann wrote chap-
ters on electricity, magnetism, atmospheric and celestial phenomena. By a Supreme
Decision of 14 June 1893, effective from 1st October of that year, Jaumann was
appointed as unpaid extraordinary professor of experimental physics and physical
chemistry at GU. In 1896, he also became head of a newly established Institute of
Physical Chemistry at GU, and from the school year 1896/97 he took over lectures
on experimental physics for students of pharmaceutical courses at the Faculty of
Philosophy (instead of Professor Ernst Lecher, Mach’s successor in Prague, and for
an extra remuneration). From 1st January 1901, Jaumann was assigned a pay of an
extraordinary professor (in the amount of 3600 K plus a performance bonus of 840 K
per year, as calculated in the new Austro-Hungarian currency – the crowns). Half
a year later, by a Supreme Decision of 19 July 1901 (effective from 1st August of that
year), Jaumann was appointed as ordinary (full) professor of general and technical
physics at the German Technical University in Brno (Brünn, the administrative city
of Moravia); his starting salary there was set at 6400 K plus a performance bonus of
960 K per year. Shortly before this appointment, in April 1901, he got married to
Augustine Alix (born in 1873 in Hermeray, France); two sons were then born from
the marriage.12)
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Let us note that in 1901, A. Lampa (at that time still a private docent and as-
sistant of the Institute of Physics at the University of Vienna) was also a candidate
for the professorship of general and technical physics at the German Technical Uni-
versity in Brno; he was nominated in third place ex aequo with Josef von Geitler
(private docent and since October 1893 Jaumann’s successor at the post of assistant
at the Institute of Physics at GU). Only Austrian candidates were considered for this
professorship, which corresponds well with the above-quoted statement of E. Mach
of the Austro-Hungarian experimental physics as a field not suffering from a lack of
excellent people. In the selection and assessment of candidates for the professorship
at the German Technical University in Brno in 1901, the decisive criteria were scien-
tific competence in experimental physics and links to technical fields; for this reason,
e.g. 36-year-old physicist Gustav Jäger, native from Bohemia and extraordinary pro-
fessor at the University of Vienna, whose scientific work was mainly theoretical, was
not included among the candidates. In contrast, G. Jaumann fulfilled the criteria
for that professorship very well at that time.13)

Jaumann’s physics papers from his time at GU were mostly experimental, in the
fields of electricity, optics and mechanics. In these works he dealt with improvements
of physical precision instruments (W. Thomson’s absolute electrometer, a regulator
for an automatic mercury vacuum pump and others), studied discharges in gases,
interference and diversion of cathode rays in electrical field, fading of light emission
of radiating bodies, suggested a modification of Foucault’s and Fizeau’s methods
of determination of speed of light. From Prague, he also published a theoretical
work “on longitudinal light” (with a concept of light and cathode rays which was
contrary to the common views of that time)14) and two theoretical works on physical
chemistry – an attempt on building a chemical theory on physical foundations15)

and a contribution to the theory of solutions.16) After moving to Brno, Jaumann’s
publications were dominated by theoretical issues, he dealt with the heat production
in flowing viscous liquids, theory of electromagnetic phenomena in moving media17)

and of radiation in strong electromagnetic fields,18) he was also one of the first to use
tensor calculus in his theoretical work.19)

Jaumann was influenced in his work by E. Mach, references to Mach can be
found in most of his publications. He nevertheless tried to find and make his own
way in physics. For his work, he was granted subsidies of the local Gesellschaft zur
Förderung deutscher Wissenschaft, Kunst und Literatur in Böhmen (of its Science
Department), as well as of the Mathematical and Science Department of the Vienna
Academy of Sciences.

In the proposal for the new professorship of theoretical physics at GU of April 1910,
worked out by professors Lampa, Pick and Rothmund, the scientific activities of
G. Jaumann were assessed just briefly and in more or less neutral way.

Jaumann hat auch eine Reihe experimenteller Arbeiten ausgeführt, von
welchen die Konstruktion eines Elektrometers und einer Quecksilberluft-
pumpe hervorgehoben seien. Seine Experimentaluntersuchungen über den
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Einfluss rascher Potentialschwankungen auf den Entladungsvorgang, ferner
die elektrostatische Ablenkung und die Interferenz der Kathodenstrahlen
waren von Bedeutung für seine theoretischen Ansichten, seien daher eben-
falls besonders angeführt. Endlich sei auf sein Werk: ‘Die Grundlagen
der Bewegungslehre’ Leipzig 1905, hingewiesen.20)

4.3. Jaumann’s response to the Ministry’s offer and his request

Gustav Jaumann replied to the Ministry’s offer of the Prague professorship of
theoretical physics by letter of 3 June 1910. First, he thanked the Ministry for
the confidence they had shown in him. He stated that the offer was a great sat-
isfaction for him, as it would be the first time that he would take up a teaching
post corresponding to his talents and specialization. For all that, he conditioned his
acceptance of the proffered post in Prague on the request that he be granted a per-
sonal allowance of 2000 K per year. He justified this on the grounds of the higher
workload and strain placed on a professor of theoretical physics in terms of training
if he wanted to keep up with the field, as opposed to teaching practically-oriented
physics at a technical university. The moral recognition he was offered should there-
fore also take a material form. He stated that it was also the last opportunity to
make amends for him for the sacrifices he had made for science during his early
career in Prague. In addition, he knew the higher cost of living there. Finally he
remarked that, in general, a professor who had another scientific career ahead of
him would gladly accept a call to the Prague professorship even at some material
sacrifice. In his (Jaumann’s) case, however, the Ministry could offer him no further
career promotion, because the professorship of theoretical physics at the (central)
University of Vienna was occupied by young talent. He concluded that he could
not therefore accept the increased workload associated with the Prague professor-
ship without material compensation. Last but not least, he also had to take into
account the welfare of his family. The Jaumann’s letter was typed on the letterhead
of his Chair of General and Technical Physics at the German Technical University
in Brno; the letter was obviously preceded by a personal meeting at the Ministry in
Vienna.

Lehrkanzel für Physik
der k. k. deutschen technischen Hochschule.

Brünn, 3. Juni 1910.
Hochgeehrter Herr Ministerialrat.
In höflichster Erwiederung Ihres geehrten Schreibens vom 28. Mai 1910
und in Zusammenfassung der Unterredung, welche ich am 1. Juli mit
dem Herrn Sektionschef und mit Ihnen, hochgeehrter Herr Ministerial-
rat, zu führen die Ehre hatte, möchte ich zunächst aufrichtig danken für
das Vertrauen, welches das hohe Ministerium mir entgegenbringt, indem
dasselbe meine Ernennung zum ordentlichen Professor für theoretische
Physik an der deutschen Universität in Prag in Aussicht nimmt. Ich
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werde nicht versäumen, diesen Dank Seiner Exzellenz dem Herrn Mini-
ster für Kultus und Unterricht, Grafen Stürgkh in einer anzustrebenden
Audienz persönlich zum Ausdruck zu bringen.
Diese ehrenvolle Berufung erfüllt mich mit hoher Genugthuung, da ich
damit zum erstenmale in eine Lehrstellung käme, welche meiner speziellen
Begabung und Arbeitsrichtung ganz angemessen ist.
Dennoch muss ich nach reiflicher Uiberlegung meine Zusage davon abhän-
gig machen, dass das hohe k. k. Ministerium mich durch die Gewährung
einer Personalzulage jährlicher 2000 Kronen auszeichnet und fördert.
Ich will mir erlauben, die Motive, welche mich zu diesem Entschlusse
führen, nachfolgend aufzuzählen:
1. Die Arbeitslast und geistige Anspannung, welche ein Professor für the-
oretische Physik an einer Universität übernimmt, wenn er auf der Höhe
seines Spezialfaches bleiben will, ist wegen der unbedingt nötigen Ver-
tiefung in der Behandlung des Lehrstoffes weitaus grösser, als die durch
die mehr auf die grundlegenden technisch wichtigen Tatsachen aufge-
baute Lehrtätigkeit eines Physikers an einer technischen Hochschule. Der
hingegen an der Technik hinzukommende intensive experimentelle Unter-
richt wird mir an der hiesigen Hochschule durch vorzügliche Hilfskräfte
sehr erleichtert, so dass mir mehr Kraft und Zeit für wissenschaftliche
Arbeit übrigbleibt.
2. Der Wunsch, dass der Anerkennung, welche in diesem Rufe liegt, auch
eine materielle Förderung folge, ist ein wohlberechtigter. Es ist diese
Berufung vielleicht die letzte Gelegenheit, bei welcher ich eine Entschädi-
gung für die grossen materiellen Opfer, welche ich bis zu meinem 38. Le-
bensjahre meiner wissenschaftlichen Karriere bringen musste, erhoffen
kann.
3. In letzter Linie wären die mir aus früherer Zeit wohlbekannten un-
günstigen Lebensverhältnisse in Prag zu berücksichtigen.
Ich gebe gern zu, dass ein Professor, welcher an eine weitere wissenschaft-
liche Karriere denkt, im allgemeinen einen Ruf an die Universität Prag
selbst unter materiellen Opfern annehmen wird. In meinem Falle kann
mir aber das hohe Ministerium eine weitere Karriere überhaupt nicht in
Aussicht stellen, weil das gleiche Fach an der Wiener Universität durch
eine junge Kraft besetzt ist.
Ich kann also mich nicht entschliessen, diese bedeutende Mehrbelastung
ohne ganz entsprechende materielle Kompensation zu übernehmen.
Ich erlaube mir schliesslich darauf aufmerksam zu machen, dass ich meine
materiellen Wünsche von Anfang an auf das mir mit Rücksicht auf das
Wohl meiner Familie unumgänglich Notwendige beschränken zu müssen
glaubte.
Indem ich Sie, hochgeehrter Herr Ministerialrat, bitte, diese Erklärung
wohlwollend zur Kenntnis zu nehmen und meine Bitte dem Herrn Sek-
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tionschef vorzulegen und Seiner Exzellenz dem Herrn Minister zu über-
mitteln,

zeichne ich
mit dem Ausdrucke vorzüglichster Hochachtung
Eurer Hochwohlgeborenen
[signed by hand] ergebenster Prof Dr G. Jaumann21)

4.4. Rejection of Jaumann’s request and complaint by the Treasury De-
partment

The Ministry of Culture and Education considered Jaumann’s request and con-
sulted it with the Treasury Department, which however took a negative stand on the
issue. The Department refused to grant a personal allowance to Jaumann just be-
cause of his transfer to a professorship in Prague, not only for restricted budgetary
reasons but also as an undesirable precedent. The Department also contradicted
Jaumann’s claims about the unfavourable circumstances of his academic career. It
stated that, as an unpaid extraordinary professor in Prague, from 1894 Jaumann
received a remuneration for conducting physics practical exercises for philosophers
(i.e., teacher candidates) and students of medicine and, from 1896, for giving lectures
on experimental physics for pharmacists (i.e., he had received a yearly remuneration
of 1000 guldens, increased to 1500 guldens in 1899; converted into the new Austrian
currency, this corresponded to 2000 K and 3000 K, respectively). From 1st Janu-
ary 1901, at the age of 37, he was awarded the salary of an extraordinary professor
(3600 K plus an performance bonus of 840 K per year) and six months later, from
1st August 1901, that of an ordinary professor (6400 K plus an performance bonus
of 960 K). After next five years he received his first statutory salary increase (800 K)
and from 1st August 1911 he would be entitled to a second increase (another 800 K);
the upper limit of the basic salary of an ordinary professor 11 200 K was to be
reached by him on 1st August 1921. Jaumann was therefore not disadvantaged in
any way compared with his peers in academia, wrote the Treasure Department in its
statement of 9 August 1910, and added:

Uebrigens würde Jaumann durch seine Berufung nach Prag nicht nur in
honorifico sondern durch die ihm daselbst zukommende Jahresremunera-
tion für das Seminar per 800 K auch in utili gewissen.22)

By letter of the Ministry of Culture and Education dated 23 August 1910, G. Jau-
mann was informed that Minister Stürgkh could not grant his request for the personal
allowance on the grounds of principle, as had already been indicated to him in ear-
lier discussions. However, he would be granted an annual remuneration of 800 K for
the direction of the Seminar at the Prague professorship (this however was not an
income counted in the old-age pension). Referring to Jaumann’s own words about
what the offer of the professorship meant to him, the letter stated that the Minister
expected Jaumann to accept the offer, adding that Jaumann had been regarded by
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the Ministry as the most competent representative from the beginning. The letter
concluded by urging Jaumann to reconsider carefully this important issue for his
academic career and to communicate his final decision to the Ministry.23)

4.5. Jaumann’s final refusal of the offered professorship in Prague

In a handwritten letter of 28 August 1910 (sent from a summer holiday stay),
G. Jaumann definitively refused the offer of the professorship of theoretical physics at
GU as his financial requirement had not been met. He probably also thought of the
reception he would meet with the colleagues in the professorial board in Prague, who
had so vehemently sought to attract the young A. Einstein to their ranks. Jaumann’s
final reply to the Ministry in Vienna was respectful but it showed his disappointment.

Hochgeehrter Herr Ministerialrath!
Ihrem geschätzten Schreiben vom 23. August l. J. habe ich mit Genug-
tuung entnommen, dass das hohe Ministerium mich gleich anfangs als
den berufensten Vertreter für die Prager Lehrkanzel erachtet hat, ein
Vertrauen, welches weit grösser als jenes ist, welches mir von Seite der
Prager Fakultät entgegengebracht worden ist, und für welches ich nochmals
meinen ganz ergebensten Dank sage.
Hingegen bedauere ich sehr, dass prinzipielle Bedenken bestehen, einem
inländischen Gelehrten im Bedarfsfalle den Wechsel der Lehrkanzel durch
eine materielle Förderung zu erleichtern. Jedenfalls gereicht es mir aber
zu grosser Beruhigung, dass Seine Exzellenz der Herr Minister für Kultus
und Unterricht Graf Stürgkh den in meinem Schreiben vom 3. Juni l. J.
angeführten Gründen, welche mir den Wechsel der Lehrkanzel erschwe-
ren, alle Würdigung angedeihen lässt.
Da diese Gründe unverändert fortbestehen, so sehe ich mich, insbeson-
dere mit Rücksicht auf das Wohl meiner Familie, zu meinem grossen
Bedauern genötigt, unter solchen Umständen den ehrenvollen Ruf an die
Prager Universität definitiv abzulehnen.
Mit dem Ausdrucke vorzüglichster Hochachtung

Ihr ergebener
Neuhaus i. Ww., 28. Aug. 1910. Dr Gustav Jaumann,

o. ö. Professor an der deutschen
technischen Hochschule in Brünn.24)

5. The Ministry’s meeting with Albert Einstein

5.1. Offering the professorship to A. Einstein

After Jaumann’s final refusal of the Prague professorship, the Vienna Ministry of
Culture and Education negotiated with Albert Einstein. In a letter dated 17 Septem-
ber 1910, the Ministerial Section Head Max Husarek informed Einstein confidentially
that he had been nominated for a professorship of theoretical physics at GU, and
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asked him to state whether he was willing to accept the appointment (and assume
the position right from the beginning winter semester or from the next summer
semester 1911). He indicated preliminary that the salary of an ordinary professor
was 6400 K per year (which sum was increased by 800 K after the fifth and the tenth
year, by 1000 K after the fifteenth and the twentieth year, and by 1200 K after the
twenty-fifth year) plus an yearly performance bonus of 1472 K. On top of that, there
was a remuneration of 800 K per year for the direction of the Seminar.25)

In the statement dated in Vienna on 27 September 1910, Einstein accepted the
offer, with a possible start in April 1911. In the event of his appointment, he asked
only for a contribution to at least partly cover his service fees and the cost of moving
from Zurich to Prague. The text of Einstein’s statement was as follows; Einstein
signed a typewritten text and added the day in the date; he also made the partial
wording changes in pen to the typescript which are indicated in the citation in
pointed brackets.

Ich erkläre mich bereit einer Berufung für die an der deutschen Univer-
sität in Prag erledigte ordentliche Lehrkanzel der theoretischen Physik
unter den in dem Schreiben vom 17. September 1910 mir bekanntgegebe-
nen Modalitäten zum Apriltermine 1911 Folge zu leisten.
Gleichzeitig möchte ich aber die Bitte stellen, mir im Falle meiner Ernen-
nung einen angemessenen Beitrag <wenigstens> zur <teilweisen> Be-
streitung der Diensttaxen und Uebersiedlungskosten bewilligen zu wollen.
Wien, am 27 September 1910.

[signature] A. Einstein.26)

After that, by letter dated 18 October 1910, the Ministry of Culture and Edu-
cation requested information from the Ministry of Foreign Affairs in Vienna about
Einstein’s general behaviour during the years of his stay in Switzerland; no obstacles
to Einstein’s appointment as professor in Prague were found in this respect.27)

In mid-December 1910 the appointment of A. Einstein was still “in process”.
However, in a letter to E. Mach of 18 December 1910, A. Lampa commented on the
situation optimistically, based on an inquiry made in the Ministry in Vienna.

Die Ernennung Einsteins ist, wie Hofrat Kelle kürzlich auf eine dies-
bezügliche Anfrage erklärte, ‘bereits im Zuge’. Nach dieser und früheren
analogen Erklärungen zweifle ich nicht mehr an der Richtigkeit der in
verschiedenen Zeitschriften vorweggenommenen Berufung Einsteins.28)

5.2. The appointment of A. Einstein

Albert Einstein was appointed professor of theoretical physics and head of the
Institute of Theoretical Physics (k. k. Institut für theoretische Physik) at GU by the
Supreme Decision of 6 January 1911, effective from 1st April 1911. He was informed
of the appointment by the minister Stürgkh in a letter of 13 January 1911. He was to
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take up his teaching duties from the summer semester of 1911. From 1st April 1911 he
was awarded an annual salary of 6400 K plus an annual performance bonus of 1472 K.
At the same time, he was put in charge of an independent Seminar for Theoretical
Physics at GU, for which he was allowed a remuneration of 800 K per year (paid in two
equal instalments, each at the end of the semester). He was allowed 2000 K to cover
the service tax he had to pay and as a contribution to his expenses for moving from
Zurich to Prague; half of the sum was to be paid upon the assumption of his teaching
duties and the other half at the beginning of the year 1912. Finally the letter noted
that the appointment was contingent on the acquisition of Austrian citizenship.29)

Professor Lippich retired at the end of the school year 1909/10. His existing
salary was cease on 30 September 1910 and from 1st October 1910 he was awarded
a pension of 11 840 K (i.e. the amount of his active salary of 11 200 K plus 640 K as an
aliquot of his existing performance bonus of 1472 K). The professorship of theoretical
physics at GU remained vacant in the winter semester 1910/11. Professor Lippich
reduced his teaching in the summer semester of 1910 already; on the grounds that
he had to finish his experimental work before leaving his teaching post, he asked to
be excused from holding a colloquium on the theory of potential.30)

6. Addendum

Albert Einstein served as the professor of theoretical physics at GU for only three
semesters. On 29 January 1912, he asked the Vienna Ministry of Culture and Edu-
cation to release him from his teaching post in Prague on 30 September 1912, stating
that he intended to accept an extraordinary offer made to him by the Eidgenössische
technische Hochschule in Zurich. At the same time he thanked the Ministry for the
kindness with which they had accepted him into the Austrian civil service. The
handwritten letter read as follows.

An das k. k. Ministerium für Kultus und Unterricht.
Der Unterzeichnete bittet um seine Entlassung aus dem österreichischen
Staatsdienst mit 30. September 1912. Er beabsichtigt, einem Rufe an
die eidgenössische technische Hochschule Folge zu leisten, der ihm die
Rückkehr zu seine Heimat unter günstigen Umständen ermöglicht, eine
Chance, die sich ihm voraussichtlich nie wieder bieten würde. Er empfindet
es als Bedürfnis, bei diesem Anlass seinen Dank zum Ausdruck zu brin-
gen für das Entgegenkommen der hohen Unterrichtsverwaltung bei seinem
Eintritt in den österreichischen Staatsdienst, und zu bitten, das die oben
angeführten besonderen Umstände als Motiv für sein rasches Ausscheiden
Billigung finden.
Mit ausgezeichneter Hochachtung

Albert Einstein
o. Professor der theoretischen Physik
an der k. k. Deutschen Universität in Prag.

Prag, den 29. Januar 1912.31)
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Einstein’s request was granted. A new proposal for the professorship of theoretical
physics at GU was prepared by A. Einstein, A. Lampa and V. Rothmund. They were
charged with the task at the meeting of the professorial board on 14 March 1912
and their proposal was presented to (and agreed by) the professorial board at the
meeting on 23 May 1912. The nominated candidates this time were three “Viennese”
physicists: in first place Philipp Frank, in second place Paul Ehrenfest (at that time
working as a private researcher and teacher in St. Petersburg, Russia) and in third
place again Emil Kohl. G. Jaumnann was no longer considered as a candidate. The
selection of candidates took into account, this time, their research work as well as
their teaching ability.

Die Kommission hat nur solche theoretische Physiker in Betracht gezo-
gen, die durch ihre Publikationen bewiesen haben, dass sie die neueren
Zweige ihrer Wissenschaft derart beherrschen, dass sie diese nicht nur
durch Vorlesungen den Studenten mitzuteilen vermögen, sondern dass sie
auch imstande sind, die jungen Leute zum selbständigen wissenschaftlichen
Arbeiten anzuregen. Bei ihrer Umschau ist die Kommission zu der An-
sicht gelangt, dass sich unter den theoretischen Physikern des Inlandes
einige von solcher Tüchtigkeit befinden, dass es natürlich erschien, in den
Vorschlag nur Oesterreicher aufzunehmen.32)

By a Supreme Decision of 7 September 1912, Philipp Frank, a 28-year-old pri-
vate docent at the University of Vienna, was appointed extraordinary professor of
theoretical physics at GU; his starting salary was 3600 K plus a performance bonus
of 1288 K per year, and a remuneration of 800 K per year for direction of (at first
just) a Proseminar (i.e. a Preliminary seminar) for Theoretical Physics.33) Ph. Frank
held this post for 26 years (from November 1917 as full professor). In the autumn
of 1938 he set off for a lecture tour in the USA. To Europe, which was then on the
brink of the Second World War, he did not return.

Gustav Jaumann continued his professional career at the German Technical Uni-
versity in Brno where he was elected Rector for the school year 1912/13. In 1911,
he was awarded the prestigious Haitinger Prize by the Vienna Academy of Sciences
for his theoretical work. Jaumann’s pay of an ordinary professor raised to 8000 K
from 1st August 1911 and to 9000 K from the end of July 1916 (plus the adequate
efficiency bonuses). From 1st September 1919 his pay reached 18 408 K plus a local
bonus of 5400 K per year. On top of this regular pay he was occasionally conferred
a remuneration for parallel lectures and exercises on physics or for substituting some
other lectures, e.g. on mechanics in the school year 1918/19.

On 21 July 1924, at the age of 61 Jaumann died of heart failure while hiking in
the Oetztal Alps. In his written legacy there remained a manuscript of a textbook
Einführung in die reine theoretische Physik of about 2000 typed pages; it was never
published, and got probably lost.35)
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Footnotes

1) NA (National Archives, Prague), collection MKV/R (Ministry of Culture and Educa-
tion, Vienna), sign. 5 Prag Philosophie Professoren, box 111, Einstein Albert (personal
file), Nr. 842/1911 (the committee’s proposal, a typed copy, 10 p.)

2) NA, MKV/R, sign. 5 C1 Prag, b. 198, Nr. 26 833/1912.

3) Deutsches Museum, München, Archiv, Nachlass Ernst Mach, Korrespondenz, catalogue
number NL 174/1877.

4) Ibd., NL 174/1878.

5) NA, MKV/R, sign. 5 C1 Prag, b. 197, Nr.17 589/1910 (letter drafted in the file, ed-
itorial changes are retained in the quotation; the appropriate title of the addressee was
completed in the final letter instead of “//” in the draft).

6) NA, MKV/R, sign. 5 C1, b. 197, Nr. 26 566/1910 (reply to Z. 17 589/1910).

7) Cf. [3], p. 204, letter No. 174 (A. Einstein to E. Mach, Bern, 9 August 1909). The full
text of the letter is accessible at https://einsteinpapers.press.princeton.edu/vol5-doc/254.

8) NA, MKV/R, sign, 5 C1 Prag, b. 197, Nr. 26 566/1910, (ad Z. 17 589/1910).
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9) Ibd., Nr. 17 589/1910 (draft of both letters in the file).

10) Ibd. (k. k. Statthalterei für Mähren, Zl. 4487 Präs., Brno (Brünn), 7 June 1910).

11) Cf. Jaumann, G.: Einfluss rascher Potentialänderungen auf den Entladungsvorgang.
Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, math.-naturwis. Klasse,
Abteilung II a, 97 (1888), 765–805; Jaumann, G.: Glimmentladungen in Luft von nor-
malem Druck. Ibd. 1587–1626. Both the publications were sent to the Mathematics and
Science Department of the Vienna Academy of Sciences by professor E. Mach as works
carried out in the Institute of Physics of GU in Prague.

12) NA, MKV/R, sign. 5 Prag Philosophie Professoren, b. 113, Jaumann Gustav (personal
file).

13) Ibd. Nr. 22 491/1901 (proposal for the professorship of physics at the German Tech-
nical University in Brno ad Z. 246, dated 22 May 1901, written by professor K. Zickler).

14) Jaumann, G.: Longitudinales Licht. Sitzungsberichte, Abt. II a, 104 (1896), 747–
792. Sent for publication by E. Mach. The work was subsidized by the Gesellschaft zur
Förderung deutscher Wissenschaft, Kunst und Literatur in Böhmen.

15) Jaumann, G.: Versuch einer chemischen Theorie auf vergleichend-physikalischer Grund-
lage. Sitzungsberichte, Abt. II a, 101 (1892), 487–530. Presented for publication by
E. Mach. In the introduction Jaumann stated: “Im Folgenden findet man die Darstellung
einer Theorie, welche vielleicht mit Vortheil an Stelle der Atomlehre verwendet werden
kann ...”

16) Jaumann, G.: Zur Theorie der Lösungen. Annalen der Physik 308 (1900), 578–617.
Sent for publication by F. Lippich. The aim of the work, as outlined in its first paragraph,
was as follows: “Die Ziel der folgenden Betrachtungen ist die Theorie der Lösungen von der
Arrhenius’schen Ionenhypothese unabhängig zu machen und sie hingegen an die Faraday-
Maxwell’sche Theorie anzuschliessen.”

17) Jaumann, G.: Electromagnetische Vorgänge in bewegten Medien. Sitzungsberichte,
Abt. II a, 114 (1905), 1635–1684. Presented for publication by G. Jaumann (who was
elected inland corresponding member of the Mathematics and Science Department of the
Vienna Academy of Sciences half a year before that). The work was also briefly reported
by Czech theoretical physicist Frantǐsek Závǐska in an overview of publications in physics
in the year 1906. Cf. Věstńık České akademie ćısaře Frantǐska Josefa pro vědu, slovesnost
a uměńı 17 (1908), p. 263.

18) Jaumann, G.: Strahlungen in starken elektromagnetischen Feldern. Sitzungsberichte,
Abt. II a, 116 (1907), 389–508. The work was presented in the meeting of the Matem-
atical and Science Department of the Vienna Academy of Sciences on 28 February 1907
and was summarized by words: “Die vorliegende Mitteilung behandelt die Strahlungen
in Medien allgemeinen Verhaltens, und zwar die Kathodenstrahlen und Kanalstrahlen,
ihre ladende Wirkung, ihre elektrostatische und magnetische Ablenkung, die elektrische
Doppelbrechung des Lichtes, die magnetische Drehung der Polarisationsebene und das
Zeeman’sche Phänomen. Die diesem Teile der Theorie zu Grunde liegende Idee ist, daß
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alle elektromagnetischen Strahlen von chemischen Schwingungen begleitet werden. Damit
soll nichts anderes ausgesagt werden, als daß die stofflichen Eigenschaften des Mediums,
insbesondere der dielektrische Koeffizient und das Leitungsvermögen desselben, in einem
durchstrahlten Medium sehr kleine aber rasche periodische Änderungen erleiden. Der Ver-
fasser hat sich bemüht, seine Theorie in nüchterner Art auf ein System sehr einfacher
Differentialgleichungen zu gründen, und hält sie dadurch der Lorentz’schen Theorie für
überlegen, umsomehr als seine Theorie eine weit größere Zahl fundamentaler Beobach-
tungen ungezwungen darstellt. Als ein Experiment, welches geeignet ist, zwischen bei-
den Theorien zu entscheiden, führt der Verfasser seine Versuche über die elektrostatische
Ablenkung der Kathodenstrahlen an.” Cf. Anzeiger der kaiserlichen Akademie der Wis-
senschaften, mathematisch-naturwissenschaftliche Klasse, 44 (1907), 78–79.

19) Cf. Jaumann, G.: Die Grundlagen der Bewegungslehre. (Von einem modernen Stand-
punkte aus dargestellt). Verlag von Johann Ambrosius Barth, Leipzig 1905.

20) NA, MKV/R, sign. 5 Prag Philosophie Professoren, b. 111, Einstein A., Nr. 842/1911,
l.c.

21) NA, MKV/R, sign. 5 C1 Prag, b. 197, Nr. 26 566/1910.

22) Ibd.

23) Ibd. (letter to G. Jaumann drafted in the file, dated 23 August 1910).

24) Ibd., Nr. 25 526/1910.

25) Ibd. (letter to A. Einstein drafted in the file, dated 17 September 1910 and signed by
Minister Stürgkh). See also [3], pp. 255–256, letter No. 225 (Max Hussarek von Heinlein,
section head in the Ministry of Culture and Education in Vienna, to A. Einstein, Vienna
17 September 1910).

26) NA, MKV/R, sign. 5 C1 Prag, b. 197, Nr. 44 334/1910.

27) NA, MKV/R, sign. 5 C1 Prag, b. 197, Nr. 25 526/1910.

28) Deutsches Museum, München, Archiv, Nachlass Ernst Mach, NL 174/1881.

29) Cf. [3], pp. 172–173, letter No. 245 (Count Karl von Stürgkh to extraordinary profes-
sor at the University in Zurich Dr. Albert Einstein, Vienna 13 January 1911).

30) NA, MKV/R, sign. 5 Prag Philosophie Professoren, b. 115, Lippich Ferdinand (per-
sonal file), Nr. 39 677/1910. Let us note that biochemist Carl Ferdinand Cori (1896–
1984), Nobel Prize winner for medicine and physiology in 1947 (together with his wife
Gerty Therese born Radnitz, and physiologist Bernardo Houssay), was Ferdinand Lip-
pich’s grandson, born in Prague from the marriage of Lippich’s daughter Maria Luisa and
professor of zoology at GU Carl Isidor Cori.

31) NA, MKV/R, sign. 5 C1 Prag, b. 198, Nr. 26 833/1912.

32) Ibd., Nr. 5925 (a copy of the committee’s proposal presented to the professorial board
of the Faculty of Philosophy, s. d., enclosed to the Dean’s letter to the Ministry of
24 May 1912, Z.1577).
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34) NA, MKV/R, sign. 5 Prag Philosophie Professoren, b. 101, Frank Philipp (personal
file), Nr. 42 446/1912 (Ministry of Culture and Education to Philipp Frank, 17 Septem-
ber 1912).

35) Moravský zemský archiv v Brně (Moravian Land Archives in Brno), collection B 34
(Deutsche technische Hochschule in Brünn, 1849–1945), Jaumann Gustav, (personal file).
On G. Jaumann as a pioneer in the field of (modern) mechanics of continuum, see [6].
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Abstract: I present my personal memories of two active participants of the
conference series “Cosmology on Small Scales” – Profs. Michal Kř́ıžek and
André Maeder. Both our scientific discussions of the issues of the small-
scale cosmological effects and our joint work on the organization of the above-
mentioned conferences are addressed.
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In this year, we are celebrating the 70th anniversary of Prof. Michal Kř́ıžek from
the Institute of Mathematics of the Czech Academy of Sciences (Prague, Czech
Republic) and the 80th anniversary of Prof. André Maeder from the Geneva Obser-
vatory (Switzerland). Both of them are actively involved in the study of small-scale
cosmological effects (particularly, the local Hubble expansion) as well as in the or-
ganization of the conferences “Cosmology on Small Scales” (CSS), which were held
in Prague every two years, starting from 2016. So, it is a great pleasure for me to
share memories of my contacts with these two eminent persons.

Prof. Michal KŘÍŽEK (born on March 8, 1952)

The first time I heard about Michal Kř́ıžek in 2005 occurred when I spent a few
months in Los Angeles (USA) in the framework of the research program “Grand Chal-
lenge Problems in Computational Astrophysics” organized by Prof. Mark Morris in
the University of California (UCLA). This program was concluded by the conference
at Lake Arrowhead, in the vicinity of Los Angeles, where I presented a report about
the local Hubble expansion, with special emphasis on the effect of the Earth–Moon
recession. After my report, some young Czech participant came to me and asked,
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Figure 1: Prof. M. Kř́ıžek giving a talk at the 1st Conference “Cosmology on Small
Scales” in 2016.

“Do you know that there is a guy in Prague who works on the similar topics?” I an-
swered that I did not know anything about that scientist, and he promised to give
me his contact details. Unfortunately, he could not find his address, and our contact
with Michal Kř́ıžek at that time did not occur.

Digressing a little from the main narrative, I would like to mention that the main
topic on which I worked in UCLA was a more accurate analysis of the primary astro-
metric data on the deceleration of the proper rotation of the Earth due to its tidal
interaction with the Moon Ṫtid (where T is the length of day). The exact value of this
effect is very important, because it can be recalculated to the linear rate of recession
of the Moon from the Earth Ṙtid, and its subsequent comparison with the recession
rate directly measured by the lunar laser ranging (LLR) ṘLLR should give us infor-
mation about a probable presence of the local Hubble expansion in the Earth–Moon
system (for more details, see [1], [2]). Unfortunately, while the value of ṘLLR is
sufficiently accurate, the data on Ṫtid — collected from the astrometric observations
during the last three and half centuries — are very “noisy”. The value most com-
monly cited in the literature is 1.4 ms/cyr (millisecond per centiyear), e.g. [3]. This
leads to the conclusion that the local Hubble expansion, in principle, can exist, but
its rate should be about 33 km/s/Mps, i.e., only about a half of the standard value
of the Hubble constant (at the intergalactic scale), which is a bit strange.

Surprisingly, when I began to process the original astrometric data — collected
since the Galilean times and presented, e.g., in the book [4], — I suddenly found
that they gave a considerably smaller value of the secular deceleration of the Earth’s
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Figure 2: Prof. A. Maeder giving a talk at the 1st Conference “Cosmology on Small
Scales” in 2016.

rotation, about only 0.9 ms/cyr. The larger values, often cited in the literature, were
actually derived by taking into account the observations of ancient solar eclipses.
Unfortunately, such ancient data are very unreliable: they lead to a huge scatter in
the average deceleration rates and, therefore, should hardly be taken into account at
all. On the other hand, the value Ṫtid = 0.9 ms/cyr leads to approximately the same
local Hubble constant as at the global scale.

As a result of my work in UCLA, I published a short paper [5], where I out-
lined a way to generalize the so-called Kottler metric for a point-like mass in the
Λ-dominated universe to the case of nonstationary Robertson–Walker cosmological
asymptotics. On the other hand, a much more time-consuming work on the secular
deceleration of Earth’s rotation remained unpublished: this was because in the sub-
sequent years I tried to include more and more contradictory data in the analysis, so
that this work became endless. . . Fortunately, a year ago Prof. André Maeder with
his young colleague Dr. Vesselin Gueorguiev published an exhaustive report on that
topic [6], and I was very proud to be its reviewer.

Returning to our contacts with Prof. Kř́ıžek, the next important step occurred in
the beginning of 2013, when I received from the journal “Earth, Moon, and Planets” a
request to review the manuscript by M. Kř́ıžek and L. Somer entitled “Manifestations
and the origin of dark energy”. My impression of the manuscript was twofold: on
the one hand, there were some problems in the accurate mathematical treatment of
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the relevant issues in the framework of General Relativity; but on the other hand,
I was delighted with the deep physical intuition of the authors and the originality of
their ideas.

Especially interesting was their suggestion that the so-called “faint young Sun”
paradox could be well resolved just by taking into account the local Hubble expan-
sion: Really, the lower luminosity of the Sun a few billion years ago should be well
compensated by a closer location of the Earth to the Sun and, thereby, conditions
of life on the Earth (particularly, existence of the liquid water) could persist at that
time. In fact, this is an extension of the so-called “anthropic principle”, i.e., a set of
the physical laws and parameters that would be absolutely necessary for the life on
the Earth to emerge and survive. Therefore, the local Hubble expansion turns out
to be one of such laws.

The above-mentioned manuscript contained also a number of other examples of
probable manifestations of the local Hubble expansion in the dynamics of solar-
system bodies, which were unknown to me before. So, I had prepared a quite long
review with suggestions how to correct the mathematical problems and emphasized
to the editorial board that, in general, my opinion is very positive. A few months
later, I received a revised version of this manuscript, where all the major drawbacks
were perfectly corrected. Therefore, in my reply letter to the journal, I strongly
recommended to accept this manuscript and assumed that its publication might be
a good starting point for further discussion of the problem of small-scale cosmological
effects by a wider scientific community. Unfortunately, as far as I understand, the
opinion by the other referee(s) was negative, and this beautiful manuscript was
rejected. Anyway, as a reward for my peer-review work, I received from Springer
publishing house a couple of valuable books.

Fortunately, in the beginning of 2014 M. Kř́ıžek and L. Somer resubmitted their
manuscript under the more accurate title “Manifestations of dark energy in the
Solar system” to the journal “Gravitation and Cosmology”. Surprisingly, I was
again appointed as a reviewer of this manuscript and, of course, my opinion was
very positive, apart from listing a few technical drawbacks. Finally, this paper
was published [7]. (It is interesting that in the early 2000’s, when I submitted
my manuscripts on the local Hubble expansion to a number of journals, most of
them were rejected. However, the editors probably remembered my name; and in
the subsequent years I often received requests to review the papers on this topic by
other authors.)

Meanwhile, even before a release of the above-mentioned article from the press,
I sent a letter to M. Kř́ıžek, where I wrote that I was very interested in his research
and also informed him that I regularly attend as a guest scientist the Max Planck
Institute for the Physics of Complex Systems in Dresden, which is located not far
from Prague; so that we could contact more closely. Michal showed great interest in
my proposal, and since that time we regularly meet each other in Prague or Dresden.
These visits were typically each autumn, when I worked in the Max Planck Institute.
Additionally, Michal organized my lecture “On the Problem of Hubble Expansion at
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Figure 3: Opening of the 1st Conference “Cosmology on Small Scales” in 2016 by
M. Kř́ıžek (standing on the podium).

Small Scales” in the Astronomical Institute of Charles University in Prague, which
took place on October 29, 2014, as well as a visit to Ondřejov Observatory near
Prague, where I was able to look at the well-known 2-meter telescope and some
other astronomical equipment (including a beautiful collection of old astronomical
instruments).

In the course of our conversations, Michal introduced me to yet another fascinat-
ing concept — the so-called “gravitational aberration” [8]. Frankly speaking, I am
not sure that this term was well-chosen; but the idea is as follows: Let us consider
a binary gravitational system, e.g., a pair of equal point-like masses rotating about
its common center of inertia, for simplicity, in a circular orbit. Then, if a retardation
of the gravitational interaction is taken into account, the forces of mutual attraction
between the two bodies will not be aligned strictly along the diameter but be slightly
deviated. The corresponding tiny force components along the direction of motion
(i.e., perpendicular to the diameter) will accelerate the bodies, thereby leading to the
expansion of their orbits. So, such an effect can mimic the local Hubble expansion
of the binary system, although its physical nature is absolutely different from the
commonly-accepted paradigm of expanding space–time.

More details about “gravitational aberration” can be found in the book “Anti-
gravity – Its Origin and Manifestations” written by M. Kř́ıžek in cooperation with
F. Kř́ıžek and L. Somer [9]. Moreover, one can find there a number of other as-
trophysical and cosmological phenomena unfamiliar to a wide range of astronomers.
A specific feature of this book is that the entire presentation — even of the advanced
topics — is done at a sufficiently simple level, e.g., comprehensible to any student
specialized in physics.
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During one of our first meetings in Dresden in 2014 or 2015, I said to Michal
that it would be nice to organize a special conference devoted to the local Hub-
ble expansion and other controversial issues of cosmology, because these topics were
underrepresented at other cosmological conferences. In fact, this was not my first
attempt to organize such a meeting. During the previous decade or so, I had al-
ready tried to suggest the idea of the organization of such a session at some other
conference; but my suggestions were rejected either immediately or after some nego-
tiations with chairmen of these conferences. Fortunately, this was not the case with
Prof. Kř́ıžek. He accepted the idea with great enthusiasm, and — which is even
more important — he had already a large experience of organization of other confer-
ences on applied mathematics. So, approximately two years later, in 2016, the 1st
Conference “Cosmology on Small Scales” was successfully conducted in Prague, in
the Institute of Mathematics of the Czech Academy of Sciences; and since that time
they repeated regularly every two years. (Even in the very hard pandemic year 2020,
Michal managed to organize a small meeting in Prague.)

When we were preparing the first conference, we tried to hold it in the spirit of the
conference “Problems of Practical Cosmology”, which was organized by Prof. Yurii
Baryshev in Saint-Petersburg in 2008. I remembered that conference for the breadth
of coverage of various topics, including the controversial ones, and by the open-
minded exchange of ideas. We expected very much that Yu. Baryshev would also
participate in the organization of our conference and invited him to join us. Unfortu-
nately, after the conference in Saint-Petersburg he had some health problems, which
precluded him from participating in other meetings. Nevertheless, he conveyed his
warm wishes to us and sent a written text of his report, which I read at the first our
conference.

As regards the logo for the conference “Cosmology on Small Scales”, Michal
suggested initially the picture of a binary system experiencing the “gravitational
aberration” and, thereby, forming the unwinding spiral (the same as placed on the
title page of his book [9]). But after some discussions we decided to prepare a new
logo, more clearly reflecting the problem of small-scale cosmological effects. So, I had
drawn a picture placed subsequently in all the books of proceedings: This is a sphere,
representing a 2D model of the expanding Universe, with planetary systems on its
surface; and a huge question mark in its center implying the main question of all our
conferences, “Does the local Hubble expansion exist or not?”

Our preparation for each conference usually began a year before the event, during
the autumn or winter of the previous year, when I visited the Max Planck Institute
in Dresden. During this time, we met each other in Prague or Dresden and dis-
cussed a general concept of the forthcoming conference. Next, after my departure to
Moscow, the majority of the organizational work was conducted just by Michal. My
role was of secondary importance, but I was permanently in contact with Michal by
e-mail. I believe that all these conferences were quite successful.

Additionally, I should mention the excellent excursions to the physical and as-
tronomical sites of Prague (related to the work and life of A. Einstein, J. Kepler,
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Figure 4: Discussion between M. Kř́ıžek (standing on the left) and A. Maeder (sitting
on the right) at the 1st Conference “Cosmology on Small Scales” in 2016. A future
director of the Institute of Mathematics CAS T. Vejchodský is sitting in the center.

T. Brahe, E. Mach, C. Doppler, and other prominent scientists), which were orga-
nized and guided by Michal after the conferences. I think that no professional guide
is such a good expert in these matters as Michal.

During my visits to Prague, I learned that Michal also organized and actively
led the work of Cosmological Section of the Czech Astronomical Society. I was
fortunate a few times to attend the corresponding sessions, which were conducted in
the same hall as the conferences. Surprisingly, while all the reports were presented
in the Czech language (which I do not know), I understood their contents almost
without problems, because all material was selected very carefully and presented
very pictorially.

Finally, I should mention that Michal Kř́ıžek is well recognized also by the math-
ematicians. It is interesting that — although Michal worked for a long time as a head
of the Department of applied mathematics — when I asked Russian mathematicians
about Kř́ıžek, they usually remembered his works on the Fibonacci numbers (which
are not immediately related to applied mathematics).

Prof. André MAEDER (born on January 10, 1942)

The history of my acquaintance with Prof. André Maeder is much shorter but
also quite interesting. As I have mentioned in the previous section, in 2002 I wrote
a short article about a probable manifestation of the local Hubble expansion in the
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Figure 5: Excursion to the physical and astronomical sites of Prague for the par-
ticipants of the 1st Conference “Cosmology on Small Scales” in 2016, guided by
M. Kř́ıžek (standing in the center with outstretched hand).

dynamics of the Earth–Moon system [1] and submitted it to the journal “Astronomy
& Astrophysics”. Just in the next day it was rejected: there were no any explanations
but only a short phrase from one of the editors that “the paper is not suitable for
this journal”. Later, I deposited this article in the electronic archive, but it was
never published in a peer-reviewed journal. (However, it became by now the most
frequently read of my publication.)

So, in the beginning of 2015 I received a letter from André Maeder, who intro-
duced himself as Professor of theoretical astrophysics at the Geneva University and
former director of the Geneva Observatory, specialising mostly in stellar evolution
and nucleosynthesis. (Unfortunately, I did not hear this name before, because I was
not interested in the above-mentioned branches of astrophysics.) He wrote that he
was very interested in my “excellent 2008 paper on the influence of the Lambda
term on the parameters of the Earth–Moon system,” as well as by my reports at
some meetings. Besides, he informed me about his previous publications at the end
of the 1970’s on the so-called scale-invariant theory of gravitation (generalization of
General Relativity), which also led to the cosmological expansion on small scales.
So, he asked if I have any further results and papers on this matter. Frankly speak-
ing, I was not sure which of my “2008 papers” he had in mind. Anyway, I sent him
a few recent publications and especially emphasized that the value of the local Hub-
ble parameter of about 33 km/s/Mps, which was presented in my first publications,
might be strongly underestimated because of the large uncertainty in the published
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Figure 6: Prof. M. Kř́ıžek (on the left) introduces Prof. A. Maeder (on the right)
before his public lecture at the 2nd Conference “Cosmology on Small Scales” in 2018.

values of the Earth rotation deceleration. I can assume that just this remark by
me, done many years ago, stimulated him in collaboration with V. Gueorguiev to
perform a much more careful analysis of the available data, resulting in publication
of the exhaustive recent review [6].

Besides, in my first letter I had drawn the attention by A. Maeder to the work
by M. Kř́ıžek [10] on the faint young Sun paradox in the context of local Hubble
expansion. (I assumed that it should be especially interesting for him as a specialist
in stellar evolution.) I emphasized also that, according to this paper, “a quite large
number of problems in the evolution of the Solar system can be reasonably resolved
just due to the local Hubble expansion”. In response, I received from Prof. A. Maeder
a very warm letter, in which he thanked me for the papers and wrote, “I think and
hope that the research line you have been pursuing for many years may be succeeding
in the future”.

As a result of these contacts, Prof. A. Maeder became a member of the Scientific
Committee of the conferences “Cosmology on Small Scales,” as well as an active
participant and speaker of our meetings. The main topic of his presentations was
the scale-invariant theory of gravitation [11]. I refrain from detailed comments on
this concept, because I am not an expert in this matter. However, I believe that
— although the small-scale cosmological effects emerge most naturally in the scale-
invariant theory — in principle, they are well admitted even in the standard General
Relativity.

Besides, being a specialist of a very wide profile, in the framework of the 2nd
CSS conference in 2018 Prof. A. Maeder presented a public lecture on a much more
empirical topic “Glaciers, geysers, dry rivers and volcanoes on Mars. Was there
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a beginning of life?” However, this subject is also closely related to the problem
of small-scale cosmological effects: Really, the recent evidence for the existence of
liquid water on Mars in the past might be an important argument that changing
luminosity of the Sun should be corrected by the local Hubble expansion, as was
already suggested by M. Kř́ıžek in the case of Earth [7], [10].
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Abstract: This paper summarizes a new model of cosmology based on the
idea of a universe in which the curvature varies with time and that vacuum
energy acts as its own source. In this model, the universe began with an ex-
ponential Plank era inflation before transitioning to a spacetime described by
Einstein’s equations. A solution of Einstein’s equations predicts a present-
day exponential acceleration of the expansion of the universe. A new model
of nucleosynthesis provides a solution to the matter/antimatter asymmetry
problem and a non-standard origin of the CMB. It is shown that a vacuum
imprint came into existence during the inflation that was responsible for the
existence of all cosmic structures. We model the evolution of all cosmic struc-
tures beginning with their definition by the vacuum imprint and ending at the
time conventionally associated with galaxy formation. We then explain the
stability of galaxy clusters and show that galactic supermassive black holes
came into existence during the initial free-fall collapse of all galaxies. The
large peaks of the CMB power spectrum are shown to be a consequence of
the superclusters and through the use of Einstein’s equations, we show that
so-called dark matter is, in fact, vacuum energy.

Keywords: evolution of the universe, inflation, Big Bang nucleosynthesis,
cosmic microwave background, origin of cosmic structures, dark matter, su-
permassive black holes
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95.35.+d, 26.35.+c, 97.10.B+, 04.20.Jb, 04.20.-q

1. Introduction

In these notes, we summarize a new model of cosmology that represents a major
departure from the standard model. It makes a significant number of predictions
that agree with observations and does so without any parameter adjusting or curve
fitting. It predicts the present-day accelerated expansion of the universe and explains
the origin of all cosmic structures, the origin of galactic supermassive black holes,
and the source of the energy that heated the gas of galaxy clusters. We show that
vacuum energy is the reality of dark matter and predict a present-day value of the
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vacuum energy that is within a factor of 3 of that of so-called dark energy. The
model details are available in the papers listed in the References section.

Observation tells us that the universe is highly organized on scales ranging from
the size of stars to superclusters and it should be clear that no sequence of random
events could ever result in such colossal organization. The conclusion is that some
organizing principle must have been in play from the very beginning.

2. Plank era

In [1], we proved that superclusters are responsible for the large peaks of the
CMB spectrum. We will have more to say about this later but the point here is
that it follows that superclusters in some form must have been in existence at that
time. We also know that at the time of recombination, superclusters, and hence the
CMB spectrum peaks, were vastly too large to be explained by any causal process.
(It is this consideration that proves that the acoustic oscillation model of the CMB
peaks is just nonsense.) And yet, superclusters exist, so the only possible conclusion
is that, even though causality is a cornerstone of the physics that applies for most of
the history of the universe, there must have been an epoch at the beginning during
which it had no meaning. Moving backward in time, since nothing much happened
between the time of recombination and nucleosynthesis, it is natural to suppose that
superclusters originated during nucleosynthesis and, indeed, their material manifes-
tation did originate at that time. Because of causality, however, the blueprint that
regulated their creation must have come into existence even earlier. The final jump
backward is to a Plank era inflation.

A critical attribute of the vacuum during the Plank era was that time, distance,
and energy were uncertain. To see this, imagine that we are interested in measuring
the duration of some event. To do so, we need a clock whose ticks are of a shorter
duration than that of the event so to measure events of shorter and shorter duration,
we must keep subdividing the ticks. We eventually come to the point at which our
tick is on the order of the Plank time. We now assert that the Plank tick cannot be
subdivided and as a result, time becomes uncertain. The same idea holds for distance
and energy as well. Because there is an inverse relationship between the radius of
curvature and the vacuum energy density, it follows too that there is a maximum
possible energy density because a minimum realizable length places a lower limit on
the radius of curvature.

Since neither time nor distance had any exact meaning, it follows that causality
had no meaning so it is only here during the Plank inflation that we are finally
able to escape the constraints imposed by causality (and entropy.) (In different
contexts, many people have developed models based on these ideas in attempts to
tame the infinities of field theory so the idea of a Plank limit is not new although
the importance of the lack of causality was not considered.) In [1], we developed
a simple model that predicts an initial exponential expansion of the universe. This
inflation lasted until the age of the universe became large compared to the Plank
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time uncertainty. From that point onwards, the evolution of the universe could be
described by Einstein’s equations with the understanding that Einstein’s equations
have validity only for dimensions large compared to Plank dimensions. Such an
inflation by itself, however, does not explain superclusters or anything else.

To make the final step, structure is needed and we conclude that large smooth
acausal vacuum structures or imprints came into existence during the inflation with
relative dimensions ranging from that of stars up to that of superclusters and beyond.
The import of these structures will become manifest when we describe our new model
of nucleosynthesis. Normally, systems do not spontaneously evolve into a highly
organized state starting from a highly disorganized state but this is what happened
and for it to have happened, there must have been an absence of causality.

We emphasize that there was no existence other than the vacuum during that
epoch and that remained true until the time of nucleosynthesis. According to this
new model, the idea that the universe began with very energetic radiation is simply
wrong.

The following Fig. 1 summarizes the situation. We define α(t) and τ by a(t) =
aP eα(t) and t = tP eτ . The exponential expansion ended when the age of the universe
became large compared to the Plank time. Following that expansion, a transition
period occurred that carried the evolution into the Einstein era. In the next section,
we will find that the value of the scaling at the end of the transition is fixed.

Figure 1: Initial evolution of the universe.

We recognize that there is no direct observational evidence that the inflation
existed and, in fact, there never can be for the simple reason that there was nothing
to observe before nucleosynthesis. The indirect evidence for an inflation, on the other
hand, is overwhelming given the assumtion that the Big Bang expansion began from
a Plank-sized beginning. The fact that the new model solution must join onto the
scaling at the end of the transition not only constrains the magnitude of the inflation,
it also forces the conclusion that it did exist. Also, a fun fact: without the inflation,
the present-day size of the universe would be a small fraction of a meter.

3. New model of the Einstein era

By the end of the transition period, the uncertainties would have become negli-
gible and normal causality would have come into play. The development of the new
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model begins with the idea that the universe consists of a sequence of hyperspheres
that are homogeneous and isotropic. These have no preferred origin and all their
properties are dependent only on time. Our perception of the universe is concerned
with signals, causality, and so on and these are dependent on both time and distance
and are described by Einstein’s equations. The question, then, is how do we reconcile
the equations that describe our perception with a sequence of hyperspheres that have
no notion of an origin or distance? The answer is that Einstein’s equations describe
the universe as viewed by each observer from the viewpoint of an origin at the ob-
server’s location. But a hypersphere is simply the collection of all possible observer
origins so Einstein’s equations become the equations that describe the hypersphere
when evaluated at any observer’s origin.

In the standard model, the assumption is made that not only are the hyper-
spheres homogeneous and isotropic but, in addition, that the universe must appear
homogeneous and isotropic. We established that the curvature must have varied
with time during the Plank era and now assert that it continued to vary afterward.
Although, as we will show, the observational differences are not large for moderate
redshifts, with time-varying curvature, the universe will not appear homogeneous.
Putting these ideas together, the metric becomes,

ds2 =

(
−1 +

r2h(ct, r)2

a(ct)2 (1− k(ct)r2)

)
(cdt)2

+ 2h(ct, r)(cdt)rdr + a2(ct)

(
dr2

(1− k(ct)r2)
+ r2dΩ2

)
. (1)

The second part of the new model concerns the vacuum energy density. Instead
of the standard model concept of the vacuum described by

Tµν = 0, (2)

the new model vacuum acts as its own source so that we have

Tµν = (ρvacc
2(ct, r) + pvac(ct, r))δ

µ
0 δ

ν
0 + pvac(ct, r) g

µν . (3)

After working out Einstein’s equations and taking the limit as r → 0, the resulting
equations can be solved in closed form. The scaling is given by,

a(ct) = a∗

(
ct

ct0

)γ∗
e

ct
ct0

c1 , (4)

where

γ∗ = γh + k̄0
(1− γh)2

γh
, (5a)

a∗ = a0 e−c1 . (5b)
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We see that the scaling is power-law for ct/ct0 � 1 and exponential for ct/ct0 ≥ 1.
The curvature is given by

k(ct) = k̄0

(
a(ct)

ct

)2

(6)

which is related to the vacuum energy density and pressure by

k(ct) =
1

2
γh a(ct)2κ (ρvacc

2(ct, 0) + pvac(ct, 0)). (7)

The sum is thus a fixed function of time,

ρvacc
2(ct, 0) + pvac(ct, 0) =

2k̄0

κ(ct0)2γh

(ct0)2

(ct)2 . (8)

Physical quantities, not just the curvature, are functions of this sum rather than
either individually.

Aside from the present-day size and age of the universe, we need the value of
the scaling at two different times to fix the parameters of the model. For one, we
use a present-day value of the Hubble constant. There is some uncertainty about its
value but a value of H0 = 70.0 km/(s Mpc) gives a good fit to the luminosity distance
data. (In [1], we used a value of 67.3 but the value of 70 gives a better fit.) For the
other, we used the present-day temperature of the CMB. (Some further development
which we will get to in a later section is needed to understand the connection.) The
remaining parameter is k̄0. Recall that during and shortly after the inflation, the
curvature was maximal. This motivates an additional principle which states that
the curvature must always be as large as possible or equivalently, that the vacuum
energy density must always be as large as possible. From the solution, it then follows
that k̄0 = 1/8 and k0 = 1.414. The derived parameters have the values γh = 1/3,
γ∗ = 0.5, and c1 = 0.49. Note that there is no direct relationship between the scaling
and the energy density or pressure so that the present-day acceleration of the scaling
follows directly from the time variation of the curvature and has nothing to do with
a cosmological constant.

Everything is now fixed and unambiguous predictions can be made. This situation
is completely different from that of the standard model which is based on the FRW
solution of Einstein’s equations for a universe in which the curvature is assumed to
be constant. The latter does not, in fact, predict anything solely on the basis of
being a solution of the equations. By making choices about various parameters, it
is possible to predict any sort of evolution one cares to see. In the new model that
is not the case. There is one solution, there are no free parameters, and only one
evolution is possible.

We define the effective scaling parameter γeff (t) by a(t) = a0(t/t0)γeff (t). In
Fig. 2, we show this parameter and the scaling as functions of time. The exponential
acceleration of the scaling is clearly visible.
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Figure 2: Time-varying curvature predictions in red. For comparison, the curve
for 2/3rds scaling is shown in blue. The indicated times are tn = time of neutron
formation to be explained below, t4000 = end of nucleosynthesis, trec = recombination,
and tG = galaxy formation.

Figure 3: r(1, ξe) vs ξe. The red curve is the time-varying curvature result. For
comparison, we also show in black the result computed assuming a constant value of
k = 1.

In Fig. 3, we show the coordinate distance of sources whose signals are received
at the present plotted as a function of the lookback time. Both time-varying and
constant curvature cases are shown. The two curves are similar for small values of
look-back time but they differ considerably for large redshifts. In particular, with
time-varying curvature, there is a fundamental limitation on our ability to detect
distance sources. No matter how far back in time we look, we cannot see sources
with coordinate distances greater than about r = 0.6. This is in direct contrast to
the standard model where no such limitation exists.
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Figure 4: Hubble parameter vs redshift. Time-varying curvature in red, constant
curvature in black, and the FRW results for two values of the densities in blue. The
FRW curves were normalized to the value of the model curves at z = 0.

The redshift dependence of the Hubble parameter, H(t) ≡ ȧ(t)/a(t), is shown in
Fig. 4.

From (8), we find that the present-day vacuum energy density sum is

ρc2(ct0, 0) + p(ct0, 0) = 2.1× 10−10 J m−3 (9)

which differs from the value of the so-called dark energy density (6.3× 10−10 J m−3)
by no more than a factor of 3. Note, however, that even though the magnitudes
are similar, these are in no way equivalent. The notion of dark energy driving the
acceleration of the scaling just does not exist in the new model.

Finally, we show the model prediction for the luminosity distance in Fig. 5. We
emphasize that this is a prediction by a model with no free parameters. Given that
the new model fits the data, we find that luminosity distance data does not provide
any evidence for a cosmological constant. It only appears in the context of the
standard model which we claim is wrong.

Up to this point, we have only considered the vacuum but eventually, particles
permeated space so we need to consider their interaction with the vacuum energy
density. For a particle with 4-velocity uµ = (ut, ur, uθ, uϕ), the geodetic equations
are

duµ

dτ
+ Γµνσu

νuσ = 0. (10)

The important point is that the connection coefficients depend only on the metric
components and these have no dependence on either the vacuum energy density
or the pressure. On the RHS, the particle density is simply added to the vacuum
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Figure 5: Time-varying curvature prediction of the luminosity distance in red. The
standard (0.24, 0.76) model is shown in blue.

energy density. Ordinarily, after including a new term, we would need to re-solve the
equations but, in fact, the equations have not changed since the particle density just
becomes part of the sum so the original solution still holds. This means that any small
variation in the particle density will be immediately canceled by a corresponding
variation in the vacuum needed to keep the sum equal to the RHS of (8). This leads
us immediately to the conclusion that accretion initiated by small particle density
fluctuations is impossible.

4. Dark matter

Shortly, we will show that the basis of nucleosynthesis was a conversion of a small
percentage of the vacuum energy into neutron/antineutron pairs. More than 99 % of
this energy remained in the vacuum, however, and that energy has important conse-
quences for cosmology. Its existence means that it must appear in any expression of
Einstein’s equations as a contribution to the energy-momentum tensor and it is this
contribution that is responsible for the phenomena attributed to dark matter.

One of the manifestations of dark matter concerns the velocity distribution of
stars in spiral galaxies and the gas making up HI rings. The spiral galaxy problem
is illustrated by the curves in Fig. 6. Curve A is the calculated velocity distribution
of the stars based on the visible matter. Curve B is the observed distribution.
The generally accepted solution for this problem is to suppose there is a halo of
dark matter surrounding the galaxy that provides the gravitation needed to match
the observed velocity distribution. There are several problems with this proposal,
however, not the least of which is the fact that a dark matter halo should act as
a halo of stars with the lights turned off so its velocity distribution should match
curve A instead of B. A different solution is needed. We get a hint if we subtract
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Figure 6: Typical spiral galactic velocity distribution.

the two curves to obtain curve C. This suggests that observed distribution can
be understood in terms of normal gravitational interaction being carried along by
a rotating spacetime. There are two issues to be addressed; namely to explain first
the spacetime rotation and second, the stability of the motion within the rotating
spacetime. Turning to Einstein’s equations, it is reasonable to model such galaxies
using a stationary axisymmetric metric,

ds2 =− A(cdt)2 +B(dφ− ωdt)2 + Cdr2 +Ddψ2

=− (A− Bω2

c2
)(cdt)2 − 2

Bω

c
dψ(cdt) +Bdφ2 + Cdr2 +Ddψ2 (11)

with an energy-momentum tensor of the form

Tµν = (ρvacc
2 + pvac)

uµuν

c2
+ pvacg

µν + ρm c
2v

µvν

c2
. (12)

Any small volume of the vacuum will respond to the total gravitation field in the same
way as does a material particle which means that we can analyze its motion using
the usual geodesic equations. Two of these are satisfied identically as a consequence
of our assumption of a stationary metric. The remaining two have the solution

ϕ̇vac(r, ψ) = ω(r, ψ), (13)

where ω(r, ψ) represents the rotation of the galaxy. What we find is that the curva-
ture of the vacuum must rotate and it is doing so with zero angular momentum. We
now consider the stars whose velocity must also satisfy the same geodetic equations.
In this case, we separated their angular velocity into a component with vanishing
angular momentum and a residual with non-vanishing angular momentum,

φ̇m(r, ψ) = φ̇m,r(r, ψ) + ω(r, ψ). (14)
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The residual angular velocity is then,

φ̇m,r(l, z) =
v

l
− ω(l, z). (15)

The next step would normally be to solve Einstein’s equations with the above metric
but, unfortunately, we have not been able to do so because of the lack of sufficient
computer power. Taking a Newtonian approach instead, in [1], we considered the
balance of forces acting on a star at rest in the plane of the galaxy with a torus of
vacuum energy lying at its outer edge co-planer with the galaxy. The result was that
the required energy density of the vacuum is only about 1% of the energy density of
the mass of the galaxy.

What this shows is that the vacuum energy density near large structures must be
considerably larger than it is far from matter which is consistent with the notion that
dark matter always seems to hover close to ordinary matter. The vacuum energy
density model solves the problem of explaining why just the right amount of dark
matter always manages to accumulate just outside every galaxy and why we do not
find the odd galaxy here and there that is missing its dark matter halo.

In [2] and [3], we discuss other cases in which vacuum energy is shown to account
for phenomena attributed to dark matter. Summing up, when vacuum energy is
included in the energy-momentum tensor, the mystery of dark matter disappears.

5. Asymmetry, radiation, and nucleosynthesis

Initially, the only existence was the vacuum so the next step is to account for
the creation of ordinary matter. We begin by separating what is known from what
is conjecture. Observations of galaxies allow the relative abundances of the light
elements to be measured. Working backward in time, the abundances at the end of
nucleosynthesis can then be estimated with some confidence, because the processes
that occurred during the intervening period are known. Similarly, the nucleosynthesis
reactions are also known so one can work backward again to discover the relative
abundances of the protons and neutrons that initiated the nucleosynthesis. We can
also establish that the process began at a time of about 10−5 s. That, however, is
as far as one can go. Whatever happened before a time of 10−5 s is beyond the
reach of even extrapolations of observations. This means, for example, that there is
no evidence to support the standard model’s field theory beginning. Here, we will
propose an alternate beginning that leads to the same nucleosynthesis starting point
but which also accounts for the matter/antimatter asymmetry of the universe.

At this point, we wish to establish the connection between the CMB and the
scaling that we referred to earlier. The temperature of the CMB at the time of the
initial particle creation is given by

T (tn) = T (t0)
a0

a(tn)
(16)
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and, assuming a black-body spectrum, the corresponding energy density was

ργc
2(tn) = aBT

4(tn). (17)

Clearly, the vacuum energy density at t = tn is fixed once the effective scaling
is known. If we now assume a trial value of γeff (trec) = 0.6, say, we find that
tn = 5.2 × 10−5s and ργc

2(tn) = 6.9 × 1039J m−3 but we also have ρvacc
2(tn) =

2.1 × 1034J m−3 which would imply a CMB energy density vastly larger than the
total energy of the universe. If we turn the problem around and set the CMB energy
density to equal the vacuum energy density, we find a value of γeff (trec) a little bit
larger than 0.5. The actual value, however, must be less than that because the CMB
does not contain all the energy. A value of 1/2 is a nice round number so from here
on out, we will assume that γeff (trec) = 0.5 with the understanding that it may need
a small adjustment in the future. The corresponding time is tn = 4.3× 10−5 s.

This now fixes the scaling so we can determine the absolute initial abundances
of the initial protons and neutrons by working backward from the present-day abun-
dances of ordinary matter. The present-day average density of baryons is on the
order of nAve(t0) = 1 m−3 but in the subregions where most of the nucleosynthesis
took place, the density was many times larger, and in the large voids, it was con-
siderably smaller. Starting with an average value of 2 m−3, we find a baryon density
of nB(tn) = 7.7 × 1033 m−3 and a photon density of nP (tn) = 1.5 × 1042 m−3. With
these values, the radiation energy was about 0.1% of the vacuum energy density and
that of the particles was vastly smaller even when their rest masses are included.
Finally, the temperature T (tn) = 4.2× 1011 K was about a factor of 10 smaller than
the standard model value at that time. With these values, we have set the basic
boundaries so the next step is to establish the sequence of events that lead to nucle-
osynthesis while at the same time accounting for the matter/antimatter asymmetry
of the universe.

In [1], we considered several possible scenarios. We concluded that nucleosynthe-
sis began with neutron/antineutron pair production with a very small bias towards
neutrons. A bias of 2-4 extra neutrons for every 108 neutron/antineutron pairs is
sufficient to explain the matter/antimatter asymmetry as well as the present-day
matter density of the universe. We also concluded that there is no other mechanism
that can explain the asymmetry. This bias must have been the same, or nearly the
same, everywhere which points us back to the initial inflation, because that was the
only era during which normal causality did not hold.

With the origin of the CMB accounted for and a plausible explanation of the
asymmetry given, we now need to account for the transition from neutrons and an-
tineutrons to a mix of neutrons and protons that will finally get us to the beginning of
nucleosynthesis proper. A long list of reactions contributed to the final outcome but
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Figure 7: Evolution of the baryon annihilation and charge exchange reactions.

the principal reactions were the baryon annihilation and charge exchange reactions,

n+ n̄→ γs+ leptons

p+ p̄→ γs+ leptons

n+ p̄→ γs+ leptons

n̄+ p→ γs+ leptons

p+ p̄ ⇀↽ n+ n̄.

(18)

The annihilation process was very fast. By a time of 10−12s after it began, it was
essentially complete. In Fig. 7 we show the evolution. See [5] for the details. (Our
original idea was that weak interactions were responsible for the creation of the
protons but that idea turned out to be wrong.) Following the phase shown, there
was a period during which the particles thermalized and the p/n ratio reached a value
of 7.4. From that point onward, nucleosyntheses proceeded in the usual manner. The
details concerning the equations and reactions are given in [1].

6. The origin of cosmic structures

In the previous section, we talked about nucleosynthesis in a general way, and
much earlier, we asserted that the vacuum imprint regulated the creation of neutrons
and antineutrons at the time, tn in such a manner as to account for all cosmic
structures.

The filament structure that defines superclusters was fixed by this process and
because they are vastly too large to undergo gravitational evolution, they are much
the same today as they were initially. To study the initial evolution of all smaller
cosmic structures, we consider the motion of a particle lying at the outer edge of
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a volume containing the mass that eventually became the structure in question,
see [2]. The only accelerations acting on the particles were gravitation and the
acceleration due to the expansion of the universe so the equation of motion becomes

R̈(t) = −GMeff(t)

R(t)2 +R0fs
ä(t)

a0

= −GMeff(t)

R(t)2 +R0fs

(
−γ∗ +

(
γ∗ + c1

t

t0

)2
)
a(t)

a0

1

t2
. (19)

The coordinate R(t) is the distance from the particle to the center of the structure
and

Meff(t) = MStruct

(
1−

(
R(t)

Rsur,s(t)

)3
)

(20)

is the effective mass of the structure adjusted for the presence of the background
vacuum energy.

If we consider a particle located at the radius of the volume needed to form any
structure from the background vacuum, nothing would happen, because the density
would be the same everywhere. To get things going, we define a parameter, fs, that
fixes the starting radius of the structure at a value less than the value corresponding
to the background vacuum density. The latter is denoted by fsur. Also, we imagine
that the particles were created at rest (no bulk motion), so their initial velocity was
fixed by the expansion.

We will first consider the evolution of a galaxy cluster. Using the Virgo cluster
as an example, we have fsur = 10. According to the accretion model of structure
formation, structures could not come into existence until there was something to
accrete which we take to mean that the starting time would be the generally accepted
time of galaxy formation. In Fig. 8, we show the model results for several values
of initial over-density. The blue line is the solution for fs = fsur and since in that
case there was no gravitational acceleration, the size would follow the expansion of
the universe. The lower black line indicates the size that would have evolved into
the present-day size in the absence of gravitational acceleration (the value at t = 0
is its present-day size.) From the results, it is apparent that a value of fs < 7 is
necessary for the cluster to have any chance of forming and a value closer to 4 would
be necessary to account for the present-day size. The point at which the structure
ceases to expand we call the zero-velocity point (ZVP) which for fs = 4 occurs at
a log time coordinate of about -0.8. What we have learned is that the cluster must
have already been a well-defined structure long before the time of galaxy formation.

Since we have argued that all structures came into existence at the time of nucle-
osynthesis, we recalculate the evolution beginning at a time of t = t4000. The result
is shown in Figs. 9 and 10. The red line shows the evolution of the cluster and
we see that it reaches its ZVP at t = tG and with its present-day size. The curves
show the paths of a few internal and external galaxies and the curve labeled fLG
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Figure 8: Solution for 4 values of the starting position with ts = tG = 3× 1016 s and
a cluster mass of Mc = 1045 kg.

Figure 9: Solution with ts = 4000 s and fs = 7.37.

Figure 10: Detail view of Fig. 9.

represents the Local Group. An interesting point about clusters is that the evolution
shown for the Virgo cluster seems to apply generally to all clusters regardless of their
mass. The value fs = 7.37 corresponds to an initial compaction ratio of 1.35 or an
initial density of 2.5 m−3 in present-day terms. What is apparent is that the motion
of the surface was completely dominated by the expansion up until a time fairly close
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Figure 11: Galaxy evolution for three values of fs and a mass of MG = 1.3× 1041kg.

to t = tG. Up until then, the particles were moving away from each other far too
rapidly for gravitation to have any effect on their evolution.

We will now apply the same model to galaxies taking the Milky Way as our
example. In this case, the outer surface parameter is fsur = 140. The result for three
values of fs is shown in Fig. 11. A value of fs = 55 results in a ZVP close to t = tG
and corresponds to an initial proton density of about 17 m−3 in present-day terms.
The really interesting prediction of the model, however, is that galaxies reached their
ZVPs with sizes many times larger than their present-day sizes. This fact turns out
to be of critical importance. It is responsible for the existence of the observed large
HI rings, [3] and as will show below, it is responsible for the existence of supermassive
black holes which, in turn, were responsible for the radiation that stabilized those
same galaxies as well as galaxy clusters.

We will next move on to the stars. Although stars are extremely dense compared
to everything else, that density is a consequence of their collapse. At the time of
nucleosynthesis, their density was essentially the same as that of their host galaxies.
To model the stars, we considered the evolution of a gas cloud with a nominal
dimension of 1 ly which happens to be the size of the Oort cloud. What we found
was that depending on the initial value of fs, stars could reach their ZVP at times
even earlier than t = trec. The fact that they did not undergo early collapse is
a consequence of the temperature of the gas. Jean’s model of collapse states that
PE +KE < 0 which results in a critical temperature of

Tc =
0.683

R(ly)
K, (21)

where R is the radius of the cloud at the ZVP. The gas, on the other hand, had
a temperature of about 4000 K at trec and its temperature decreased thereafter
proportional to a(t)−2. Comparing, we find that the temperature did not reach the
critical value until t = tG when it had a value very close to 1 K.

We have not mentioned rotation up to this point, but we present arguments
in [2] indicating that each region of the vacuum imprint that defined a structure also
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established its rotation and that on the larger scales, the rotation is not a matter of
particle motion but of vacuum rotation.

Summing up, we find that all structures other than superclusters reached the ZVP
of their evolution at approximately the same time. (We note that recent observations
place the origins of the oldest galaxies and stars in agreement with this model.)
Based on the expansion model we have used, after the ZVP, all structures would
have rapidly undergone gravitational free-fall collapse. In the next section, we will
explain why that did not happen.

7. Post ZVP structure evolution

The reason that galaxies and clusters did not collapse was that their constituent
gas was rapidly heated very soon after they reached their ZVPs. We will first consider
the evolution of clusters. To model the dynamics, we use the following hydrodynamic
equations derived in [4]. We assume spherical symmetry and adopt the Lagrangian
viewpoint. The final equations in terms of dimensionless coordinates are as follows;

∂r̄

∂t̄
= v̄, (22a)

∂v̄

∂t̄
=− m̄

r̄2
− 4π

ρ̃5/3

r̄4/3

(
∂ψ̄

∂m̄
+

5

3

ψ̄

ρ̃

∂ρ̃

∂m̄

)
+

10

3

ρ̃2/3ψ̄

r̄7/3
+
r̄

t̄2

(
−γ∗ +

(
γ∗ + c1

t̄

t̄0

)2
)
a∗,

(22b)

∂ρ̃

∂t̄
= −4π ρ̃2 ∂v̄

∂m̄
, (22c)

∂ψ̄

∂t̄
=

2

3

(
r̄2

ρ̃

)2/3

q̄. (22d)

We have defined a dimensionless time, t̄, by t = ts(0.469+t̄), where ts =
√
Rc

3/GMC =
6.8 × 1016 s so t̄ ranges from 0 to 5.91 as t ranges from tG to t0. In terms of this
dimensionless time, the free-fall time is t̄ = 1.1 which sets the time frame within
which the cluster must be stabilized. In these equations, we have eliminated the
pressure in favor of an entropy function,

ψ̄(t̄, m̄) =
p(t̄, m̄)

ρ(t̄, m̄)5/3
(23)

and have defined an adjusted density by

ρ̃(t̄, m̄) ≡ ρ̄(t̄, m̄) r̄2. (24)

The Lagrangian independent spatial coordinate, m̄, is related to the radial coordi-
nate by

m̄ = 4π

∫ r̄

0

ρ̃(t̄, r̄′)dr̄′. (25)
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We note that these equations do not contain any dimensionless cluster-dependent
parameters so the solutions apply to any cluster. Initially, the gas had a temperature
of at most a few K and because we are starting at the ZVP, v̄(t̄, m̄) = 0. We have
seen that clusters reached their ZVPs with present-day size so their average density
and total mass are known as well. We have two problems to solve. The first is to
determine what combinations of the initial density and radiation result in a cluster
that neither collapses nor evaporates. The second problem is to identify the source
of the radiation.

We will now just state some results. First, it immediately becomes clear that
compressive heating alone develops far too slowly to prevent a collapse. Next, we
discovered that with a uniform initial density profile, a collapse will happen no matter
what temperature profile is assumed. The same is also true of an initial density
profile that is strongly peaked at the origin. That being the case, we considered
the linear profile with a moderate negative slope shown in Fig. 12. We next need
to assume a radiation profile. We first tried the relatively broad profile shown in
Fig. 13. The sample profiles have a maximum value of unity which is then scaled by
a multiplier in the simulation code. In Fig. 14, we show the result for a multiplier

Figure 12: Linear density profile.

Figure 13: Broad radiation profile.
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Figure 14: Solution with the density and radiation profiles of Figs. 12 and 13.

Figure 15: Narrow radiation profile.

Figure 16: Solution with narrow radiation profile and a multiplier of 6.

of 5, and find that the cluster undergoes a significant expansion with no sign of
a slowing within the range shown. This is telling us that while a significant amount
of radiation immediately after the ZVP is necessary, it must also be short-lived.
A much narrower profile is shown in Fig. 15. (Narrow is a relative term, the width
of the peak still amounts to ≈ 109 yr.) Fig. 16 shows the resulting evolution. We
have thus found a solution that neither collapses nor exhibits undue expansion. The
necessary conditions are that the density profile must have a modest negative slope
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Figure 17: Density profiles of a galaxy undergoing free-fall collapse.

and that the radiation profile must rise sharply after the ZVP and then, just as
quickly it must cease or nearly cease. The actual peak radiation intensity is given
by qpeak = f 1.4× 10−5 J kg−1 s−1, where f is on the order of 5 or 6. Multiplying by
the mass of the cluster, the total absorbed radiation works out to be on the order of
f 1040 W or f 2.5M�c

2 yr−1.

The final problem is to identify the source of this radiation. We need a huge
power output and even more importantly, a long lifespan and active galactic cores,
or, in other words, quasars are the only real possibility. A necessary condition for
a quasar to form is that the host galaxy must contain a supermassive black hole. You
will recall from the previous section that galaxies reached their ZVP with sizes many
times larger than their present-day size. Immediately afterward, they began to free-
fall. Initially, the gas making up the galaxy was cold so there was no pressure gradient
to slow the collapse. Fig. 17 shows a sequence of density curves of a collapsing galaxy.
We find that the center density increases extremely rapidly and does so long before
there is any significant reduction in the radius of the galaxy.

We can now understand the sequence of events. The rapid increase in the center
density resulted in the formation of a supermassive black hole. As the collapse
continued, the infalling material formed an accretion disk. The resulting radiation
heated the intergalactic gas which eventually stopped the collapse of the galaxy. The
key point is that the supermassive black holes came first and that all galaxies must
have formed such black holes, because they would have otherwise collapsed.

Much of that radiation would have escaped the galaxy and in the cases in which
the galaxy was located in a cluster, it would have heated the cluster gas. The
Virgo cluster contains a large number of galaxies, most of which are dwarf ellipticals.
References in [4] found that quasar host galaxies are all ETGs with the bulk being
ellipticals and that dwarf ellipticals do have active nuclei. The Virgo cluster does not
contain a quasar at present but it is a characteristic of active nuclei that they radiate
huge amounts of energy up until their supply of accretion material runs out. After
that, they become normal galaxies. The conclusion is that clusters were heated from
within by a large number of mini-quasars that collectively used up their accretion
supplies within the time scale indicated in Fig. 15.
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Figure 18: CMB anisotropy.

8. CMB spectrum

We began our discussion with the statement that superclusters were responsible
for the peaks in the CMB spectrum. We will now justify that statement. Fig. 18
shows the well-known CMB anisotropy map. A portion of the map has been enlarged
in the lower rectangle and two angular size references are also included. The CMB
we receive was emitted by a spherical shell whose radius is fixed by the coordinate
distance of Fig. 3 when evaluated at the time of recombination. Thus, S(trec) =
0.6 a(trec). For a structure of size, D(trec), the subtended angle would then be

θ =
D(trec)

S(trec)

360

2π
(26)

which becomes

θ =
D(t0)

0.6a(trec)

a(trec)

a(t0)

360

2π
= 95.5

D(t0)

a(t0)
deg . (27)

An important fact is that light travels alone lines of constant angle so the subtended
angle is independent of time. Plugging in the size range of superclusters, we find
that their angular size lies in the range 0.2◦ < θ < 2.0◦ so superclusters and voids
are large enough to account for the peaks and in fact, these are the only structures
that are large enough. (We note that at the time of recombination, the maximum
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Figure 19: Count of observed superclusters (red) and voids (blue).

Figure 20: Ensemble average supercluster/void CMB spectrum. Angles are related
to the moment by l = π/θrad = 180/θdeg.

angular distance a signal could have traveled was 0.05◦ which rules out the acoustic
oscillation theory.) In Fig. 19, we show a plot of 71 known superclusters and voids.
Using the Gaussian distribution shown, we obtain the spectrum shown in Fig. 20,
We find that the position of the peak is correct. The shape of the predicted peak is
slightly broader than the observed peak but that is quite likely because we assumed
that the superclusters were spherical which is certainly not the case. The magnitude
of the peak was adjusted to match the observed peak and is not a prediction. We
note too that the 2nd peak does not correlate with the size of any structure which is
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Figure 21: Count of structures vs size.

strong evidence that it results from multipole distributions within the superclusters
and voids. Referring back to Fig. 18, we see that the supercluster-sized structures
have a range of temperatures which supports that idea.

9. Tying things together

We showed earlier that accretion initiated by small fluctuations in an otherwise
uniform distribution of ordinary matter is impossible. We also showed that gravita-
tion was ineffective until shortly before tG so the idea that accretion is the primary
source of cosmic structures is wrong. Another insurmountable problem with accre-
tion is that no process that involves communication could account for structures as
large as superclusters. The conclusion we reached was that the existence of struc-
tures is a consequence of an imprint established during the initial inflation which
regulated the material manifestation of the structures at the time of nucleosynthesis.
Fig. 18 is not just a map of the CMB anisotropy but is also a photograph of the
vacuum as it existed at the end of the inflation.

Given this high degree of organization, there must have been some rule that reg-
ulated the pattern embedded in the imprint. In Fig. 21, we show a plot of the count
of cosmic structures versus their size. The dashed line shows the count of structures
of a given size that would fill the universe. The extreme structures (size > 45◦) fall
below this line but this is simply a consequence of the finite size of the universe.
What is remarkable is that aside from the extreme structures, all cosmic structures
with their vast differences in size and numbers lie on a power-law curve and this
holds all the way down to the stars. We see that superclusters fall on both lines so,
in an order of magnitude sense, they fill all space. Another point to notice is that
the structures have distinct sizes with no overlap. If accretion was the process by
which the structures were formed, one would expect a continuum of sizes instead.
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Figure 22: Count of structures vs size.

A fit to the curve has the following result,

C(s) = 5.7× 106(sSc/s)
1.1, (28)

where we have scaled by the average size of a supercluster.
The formula for the dashed line is

Cfilled(s) = (a0/s)
3. (29)

The significant factor here is the power of 3. The idea of a fractal dimension extends
this concept to situations in which the power can have any value, not just an integer
but this is exactly the form of (28) so we find that the structure imprint had a fractal
dimension of 1.1. It is generally true that the fractal dimension of any system is larger
than the geometric dimension of that same structure so it follows that the cosmic
structure must be 1-dimensional or in other words, it must consist of filaments or,
to use the common term, the cosmic web. A defining property of fractal structures
is self-similarity so that seems to be the underlying guiding principle that regulated
the formation of the imprint.

In Section 6, we developed a model to show how nucleosynthesis regulated by the
imprint formed the structures. In each case, we adjusted the fs parameter so that
the ZVP times occurred at t = tG. The imprint, however, could not look ahead to
make such adjustments so again, there must have been some guiding principle. In
Fig. 22, we show a plot of the initial sizes of the structures versus their mass. The
formula is

fsR0 = 2.06× 104m0.28 (30)

so again we have a power-law relationship between structures of vastly different sizes
and masses.

Here at the end, we are back at the beginning. The big mystery is the Plank era
inflation. We have no clear idea of how it worked but we have demonstrated that it
was responsible for the universe we observe.
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Abstract: We claim that gravitational potential energy (GPE) should be
considered positive with zero in the bottoms of gravitational potentials, GPE
has physical importance, and it is stored in space-time. Analysis of a toy-
model example of sequential mergers of a system of N black holes (BHs) which
are hierarchically structured is presented. For large N , the GPE becomes
considerably larger than the total mass of the standard matter in the system.
We prove that the GPE quantity of two gravitationally bound bodies is the
same at both bodies independently of their masses. It explains the higher
velocity of galaxy rotations in their peripheral parts than it corresponds to
standard mass distributions in the galaxies. We show that the largest density
of GPE is in the nearest vicinity of the connecting line of gravitationally bound
bodies or systems. It explains the fibers and walls of a gravitational lensing
dark matter (DM) between galaxies, galactic clusters, and super clusters. We
argue that the GPE of a large number of BHs can explain both the quantity and
the spatial distribution of both DM and dark energy (DE) in the observable
universe.

Keywords: Gravitational potential energy, dark matter, dark energy, cosmol-
ogy, black holes, spacetime

PACS: 04.70.Bw, 95.10.-a, 95.35.+d, 98.35.Hj, 98.65.-r, 98.80.-k

1. Introduction

The concept and properties of DM [1], [2] and DE [3] belongs to the greatest mys-
teries in physics for several decades. The goal of this paper is to analyze this concept
in its relation to an elementary model-dependent consideration involving GPE as a
positive quantity with zero in the bottoms of gravitational potentials. For the com-
putation of the GPE between two point bodies, we can integrate the gravitational
force between these two bodies, whose magnitude is given by Newton’s law of gravi-
tation [4], concerning the distance between them. Using that definition, the gravita-
tional potential energy of a two-body system of masses m [kg] and M [kg] at a distance
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r [m] between them, using gravitational constant G = 6.67408× 10−11 [m3kg−1s−2] is

U = −GmM

r
+ K, (1)

where K is an integration constant. It is generally considered that only differences
have physical importance for all potential energy, therefore, the choice of zero point of
GPE is arbitrary, therefore K is considered according to convention zero (K = 0) and
GPE is considered negative [5]. The convention can be justifiable in gravitationally
bound systems with only shallow gravitational potential, like the Solar system, where
a mass of GPE is very low in comparison with a mass of standard matter of the system
in agreement with Einstein relation [6]:

U/c2 = mGPE,

where c [m/s] is the speed of light. It is strange, that this convention is held up to
nowadays, especially in cosmology, in systems with many BHs, like galaxies, galactic
clusters, and the universe, where GPE constitutes an important part of the systems.

It follows from the Friedman equations [7] and measurements of cosmic microwave
background that the density of the universe is about 9.9 · 10−27 [kg/m3], see [8]. The
mass of standard matter is only about 5 % of this value. The rest of the universe
mass is an unknown substance in cosmological models with negative GPE like the
main-stream Lambda-CDM model [9], a zero-energy universe [10], and the MOND
theory [11]. About 25 % of the unknown universe’s mass has been called DM. It is
observed in large structures only gravitationally. Scientists have searched for particles
of DM unsuccessfully for more than 20 years [12]. About 70 % of an unknown mass
of the universe has been called DE. It is represented by the cosmological constant
Λ with uniform mass distribution in the universe in the main-stream Lambda-CDM
model. It is supposed that DE causes accelerating expansion of the universe [13].
No one knows what DE is. There are only speculations. Therefore, there are enough
reasons to study a cosmological model with positive GPE.

2. Positive gravitational potential energy

We will consider GPE between bodies of standard matter only in the following.
Real bodies in the universe, which are sources of significant gravitational potentials,
have spherical or nearly spherical shapes with radii always larger than zero. Owing
to the simplicity of the following calculations let us use the equation (1) and suppose
that the GPE of two gravitationally bound bodies is zero when the bodies merge.
BHs have the deepest gravitational potentials in the universe, therefore systems
with them have the largest GPE. Let us suppose that the bottoms of gravitational
potentials of BHs are at their event horizons. A radius Rs [m] of an event horizon
for the Schwarzschild (no rotating and charged) BH [14] with mass M is

Rs =
2GM

c2
. (2)
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Then the constant K in (1) is

K =
GmM

Rs

=
mc2

2
, (3)

for two-body systems with a body with mass m and a BH with mass M in Euclidean
non-wrapped space. But the real space is wrapped in the vicinity of massive bodies
according to relativity theory, therefore the constant K is larger. Let us suppose
that the value of K is identical to the maximum quantity of energy calculated by
Hawking [15] which is released when two Schwarzschild BHs with identical masses M
are merged

K = (2−
√

2)Mc2 ≈ 0.5858Mc2. (4)

Regardless the GPE the value K can be considerably larger for rotating BHs [16],
the value of K in (4) will be used in the following.

2.1. Where is GPE stored?

Theories with negative GPE suppose that GPE is stored in volumes of gravi-
tationally bound bodies (including BHs), because negative mass energy cannot be
at any point of space-time. When the bodies are spiraling to merge and generate
gravitational waves (GW) their masses are decreasing [15], [17]. But there is not any
proven theory how GPE can be squeezed from BH masses under the event horizon
when BH is moving towards deeper gravitational potential. Nevertheless, there are
objects which would give information about the tiny change of their rest masses in
positions with different gravitational potential. They are free atoms with their elec-
tromagnetic spectral lines. Assuming that both electrons and nucleus lost the same
percentage value of their rest masses in a place with deeper gravitational potential,
then such loss of the rest mass would change their electromagnetic spectral lines.
The difference between the GPE mass of an object with mass m on the Sun‘s surface
and Earth‘s surface is about 0.000001 m. Such change in the rest masses of the elec-
tron and nucleus would change the optical spectra of the atoms. But astronomers
do not observe such changes. They observe only the Doppler and gravitational shifts
in spectra of stars [18]. Therefore, we can conclude that GPE could not be stored
in the rest masses of gravitationally bound objects. Therefore, the space-time is the
only possibility where GPE can be stored.

Let us suppose that the GPE of two gravitationally bound bodies can be imag-
ined as a scalar field of elastic deformation of two spherically symmetrical vector
gravitational fields (VGF) of two bodies in space-time. The highest violation of
spherical symmetry of the VGF is in the surroundings of a connecting line between
the two bodies and the highest density and mass of GPE is there. The violation of
spherical symmetry of VGF of two gravitationally bound bodies can reach infinity
in principle. Therefore, GPE and its mass can be far from the two bodies. The
value of the elastic deformation of the VGF and consequently GPE distribution in
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Figure 1: Illustration of the electric field surrounding a positive (red) and a negative
(blue) charge. Source –
https://www.iitjeephysics4u.com/2019/03/electric-field-lines.html.

space-time would be the same as the density of force lines of an electrostatic field
between two bodies with plus and minus charges of the same value (see Figure 1).

The equation (1) can be rewritten as

U =
−mVM(xm) + K

2
+
−MVm(xM) + K

2
, (5)

where Vm(xM) = −Gm/r is the gravitational potential of the body m in the place
of the body M , VM(xm) = −GM/r is the gravitational potential of the body M in
the place of the body m and r is a distance between the bodies. In such a case, we
have

mVM(xm) = MVm(xM). (6)

The equation (6) tells that the same amounts of GPE are at both bodies m and M
independently of their masses. The GPE between them has the highest density and
is similar to a filament. If the body M is the Schwarzschild BH with mass M�m and
the distance r�Rs, then their GPE mass is close to (2−

√
2)m see equation (4) [15].

2.2. Thought experiment: Calculation of positive GPE in galaxies and the
observable universe

Let us start from a thought experiment with a gravitationally bound and hier-
archically structured system of 32 Schwarzschild BHs (see Figure 2), every with the
same rest mass M0 = 10Msun, with the event horizon radius Rs = 2.97 · 104 m and
with distances between them r�Rs.

Let us suppose that:
1. 16 pairs of the closest BHs have merged and created 16 new BHs, each with

the rest mass of 2M0. By (4) mass of GPE ≈ 16 · 0.5858M0 has been released during
this process.
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Figure 2: A model example of the hierarchically structured system of 32 gravitation-
ally bound BHs. The BHs are indicated by the black points, the arcs indicate the
BH orbitals of individual hierarchic levels.

2. In the resulting system, 8 pairs of the closest BHs have merged again and
created 8 new BHs with the rest mass of 4M0. The mass of GPE ≈ 16 · 0.5858M0

has been released again during this process.

3. In the resulting system, 4 pairs of the closest BHs have merged again and
created 4 new BHs with the rest mass of 8M0. The mass of GPE ≈ 16 · 0.5858M0

has been released again during this process.

4. In the resulting system, 2 pairs of the closest BHs have merged again and
created 2 new BHs with the rest mass of 16M0. The mass of GPE ≈ 16 · 0.5858M0

has been released again during this process.

5. In the resulting system, the pair of the resulting BHs have merged again and
created 1 new BH with the rest mass of 32M0. The mass of GPE ≈ 16 · 0.5858M0

has been released again during this process.

209



The total mass of GPE ≈ 80 · 0.5858M0 ≈ 46.864M0 has been released in these
5 steps. It is ≈ 1.465 times longer than the sum of the rest masses of all 32 BHs. It
means that this system of 32 BHs each with mass M0 has the total mass ≈ 78.864M0

for an outside observer. He can see the mass of 32M0 as standard matter and the
mass of 46.864M0 as mysterious DM.

It is evident, that this method is possible to use for the calculation of GPE of
far larger hierarchically structured systems. For example, GPE masses for similar
systems with 1 024 (210); 1 048 576 (220); 1 073 741 824 (230); . . . hierarchically
structured BHs are nearly 2.929 times; 5.858 times; 8.787 times; . . . correspond-
ingly, higher than the sum of rest masses of the BHs in the corresponding systems.
Moreover, if every BHs is surrounded by standard baryon matter with a total mass
considerably larger than the mass of the corresponding BH, then it is necessary to
add the value of 0.586 to the GPE mass for the corresponding BH system. It is
followed from the thought experiment, that DM in galaxies and galaxy clusters can
be explained by a certain quantity of the hierarchically structured BHs.

2.3. Distribution of GPE in galaxies and the universe

It is estimated that there are about 108 stellar-mass BHs in the Milky way [19,
20]. Galaxies are made of dense central bulges, peripheral areas with spiral arms and
spherical halo. Heavy objects including BHs are more likely in central parts than
in remote peripheral parts. Remote parts of galaxies contain predominantly sparse
galactic gas with hydrogen. It has been shown above in equation (6) that amount
of GPE near two gravitationally bound bodies is the same and it does not depend
on their masses. Therefore, the dependence of the amount of GPE on distance
from the center of the galaxies is decreasing considerably more slowly than the same
dependence of the standard matter. As a result, the mass of GPE considerably

Figure 3: A comparison of possible mass distributions of standard matter and positive
GPE in galaxies.
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Figure 4: Dependences of ratio (GPE mass)/(mass of standard matter) versus BH
quantity in a system. Lower line represents Schwarzschild BHs (K ≈ 0.5858mc2).
Upper line represents Kerr (rotating) BHs (K ≈ 0.6441mc2).

exceeds the mass of standard matter and in peripheral parts of galaxies (see Figure 3).
This fact causes rotational velocities of peripheral regions of galaxies to be much
higher than it corresponds to distribution of standard mass. It also causes observed
gravitational lensing of light coming from remote galaxies.

There are approximately 1011 galaxies in the observable universe [19] and it is
supposed that the galaxies contain about 107–108 BHs on average. Therefore, it
is supposed that there are approximately 1018–1019 BHs in the observable universe
and they represent approximately 0.01–0.1 % of the standard mass of the universe.
In Figure 4, one can see the dependence of ratio (mass of GPE)/(mass of standard
matter) versus quantity of BHs in systems. Altogether 1019 Schwarzschild BHs (in
(1) K ≈ 0.5858mc2) together with other standard matter is the source of GPE
mass which is about 19 times larger than the standard matter mass of the universe.
This ratio is identical to the ratio of the sum of DM and DE mass (95 %) versus
standard matter mass (5 %) in the universe. Note that 1018 Kerr BHs [20] (in (1)
K ≈ 0.6441mc2) together with other standard matter is the source of GPE with
mass which is about 20 times larger than the standard matter of the universe.

3. Concluding remarks and summary

Only bodies with shallow (no deep) gravitational potentials like planets and stars
of the sun type there had been known in the universe in the first half of the 20th cen-
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tury. GPE mass of the bodies is negligible in comparison with standard mass of the
bodies. Therefore, the consensus, that GPE has no physical importance, GPE had
been considered negative and acceptable at that time. It is strange, that this consen-
sus is held up nowadays, because it is estimated that there are 1018–1019 BHs with
very deep gravitational potentials in the universe [19] and, therefore, the assump-
tion, that GPE has no physical importance cannot be valid at present. Moreover,
there are several problems in models with negative GPE. It is supposed that GPE is
deposed in volumes of a gravitationally bound body in the cosmological models with
negative GPE, since negative energy cannot be deposed in an empty space-time [21].
As a result, the rest masses of bodies and particles cannot be invariant in positions
with different gravitational potentials. The universe of all cosmological models with
negative GPE has a large mass deficit called DM and DE, because negative GPE
mass is subtracted from the positive mass of all bodies, particles, fields, and ener-
gies. An extreme is “The universe from nothing” [10], where the whole mass of the
universe is zero.

The presented cosmological model with positive GPE has moved zero of GPE
from infinity into the bottoms of the gravitational potentials of the gravitationally
bound bodies. The place of deposition of GPE has been moved from volumes of grav-
itationally bound bodies into space-time. Rest masses of bodies remain invariant in
positions with different gravitational potentials in the presented model. Bodies with
the deepest gravitational potentials are BHs and therefore the mass of GPE of sys-
tems with a large number of hierarchically structured BHs can be considerably larger
than the mass of standard matter including the BHs that constituted the system. It
explains weak lensing observations of 1E 0657-558 a unique cluster merger [22], where
are galaxy clusters separated from hot intergalactic gas. The gravitational lensing
of the galaxy clusters is considerably larger than the neighboring intergalactic gas
despite the cluster standard masses being several times smaller. GPE quantity of
two gravitationally bound bodies is the same at both bodies independently of their
masses. It explains a higher rotational velocity of galaxy rotations in their peripheri-
cal parts than it corresponds to standard matter mass distributions in galaxies. The
largest density of GPE is in the nearest vicinity of the connecting line of gravitation-
ally bond bodies or systems. It explains fibers and walls of gravitational lensing DM
between galaxies galactic clusters and superclusters [23]. GPE of a large number of
BHs can explain both the quantity and space distribution of both DM and DE in
the observable universe.
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Václav Vavryčuk
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Tomáš Vejchodský
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13:00–13:20 Opening (Michal Kř́ıžek and Yurii Dumin)

Chair: Michal Kř́ıžek

13:20–14:10 André Maeder, New perspectives in the Scale Invariant Vacuum theory

14:10–15:00 Václav Vavryčuk, Expansion of the Universe and the cosmological
redshift

15:00–15:30 Mart́ın López-Corredoira, Fundamental ideas in cosmology. Scien-
tific, philosophical and sociological critical perspectives

15:30–16:00 Coffee Break

Chair: André Maeder

16:00–16:30 Elena Asencio, El Gordo: a massive blow to ΛCDM cosmology

16:30–17:00 David Fernández-Arenas, Determination of the local value of Hubble
constant and cosmological constraints with local giant HII regions and high-redshift
HII galaxies

17:00–17:20 Roberto A. Capuzzo Dolcetta, Giovanni Carraro, A possible al-
ternative to dark matter on galactic scales

17:20–18:00 Pavel Kroupa, The star-formation histories of nearby galaxies raises
questions on cosmology

18:00–18:05 Wolfgang Oehm, A possible constraint on the validity of GR for very
strong gravitational fields (Poster presentation)
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Thursday, September 22

Chair: Tuomo Suntola

9:00–9:45 John C. Botke, A different cosmology

9:45–10:15 Asher Yahalom, The weak field approximation of general relativity,
retardation, and the problem of precession of the perihelion for Mercury

10:15–10:45 Coffee Break

Chair: Mart́ın López-Corredoira

10:45–11:15 Heikki Sipilä, Recalculation of the Moon retreat velocity supports
expansion of gravitationally bound local systems

11:15–11:45 Tuomo Suntola, In a holistic perspective everything in space is inter-
connected

11:45–12:05 Joerg Dabringhausen, The integrated galaxy-wide stellar initial mass
function over the radial acceleration range of early-type galaxies

12:05–14:00 Lunch Break

Chair: Wolfgang Oehm

14:00-14:30 Mart́ın López-Corredoira, José Ignacio Calvo-Torel, Fitting of
supernovae without dark energy

14:30–15:00 Itzhak Goldman, Neutron stars constraints on a late transition of the
gravitational constant

15:00–15:30 Ahmad Hujeirat, Why the energy density in our universe must be
upper-limited? – observations confront theory

15:30–16:00 Conference photo - Coffee Break

Chair: Václav Vavryčuk

16:00–16:30 Moritz Haslbauer, The KBC void and Hubble tension in ΛCDM and
Milgromian dynamics

16:30–17:00 Luboš Neslušan, A demonstration of the difference between the nor-
malized and non-limited solutions of the field equations in the modeling of relativistic
compact objects

17:00–17:30 Xavier Hernandez, A covariant description of local gravitational anoma-
lies and its cosmological implications

17:30–18:00 Ziad G. Sakr, Untying the growth rate sigma 8 disentanglement

18:00–18:20 Yurii Dumin, Lambda-instability of Keplerian orbits and the problem
of hypervelocity stars
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Friday, September 23

Chair: Heikki Sipilä

9:00–9:30 Klaus Morawetz, Consistent solution of Einstein-Cartan equations with
torsion outside matter – consequences for dark matter

9:30–10:00 Juan De Vicente, A comprehensible view of the Hubble tension

10:00–10:30 Václav Vavryčuk, Physical properties of the conformal FLRW metric

10:30–11:00 Coffee Break

Chair: Luboš Neslušan

11:00–11:40 Charles J. Sven, Evidence of dark energy using 3D physics

11:40–12:00 Čestmı́r Hradečný, Cosmology model with positive gravitational po-
tential energy

12:00–14:00 Lunch Break

Chair: Asher Yahalom

14:00–14:30 Vesselin G. Gueorguiev, An alternative explanation of the orbital
expansion of Titan and other bodies in the Solar system

14:30–15:00 Yurii V. Dumin, What can we learn from the low-multipole part of
the CMB spectrum?

15:00–15:20 Nikolaos Samaras, Cosmological simulations with Milgromian dynam-
ics

15:20–15:40 Frederic Lassiaille, Discrete relativity: current status of the research

15:40–16:00 Michal Kř́ıžek, 100 years of the Friedmann equation

16:00–16:30 Coffee Break

Chair: Pavel Kroupa

16:30–17:00 Igor V. Karachentsev, Dark-to-luminous matter ratio in the local
volume galaxies (ZOOM presentation)

17:00–17:30 Alexei Starobinsky, Inflationary models with large peaks in primordial
perturbation spectra at small scales (ZOOM presentation)

17:30–18:00 Kirill A. Bronnikov, Wormholes in a Friedmann universe (ZOOM
presentation)

18:00–18:20 Kurt Koltko, Gauge CPT experimental predictions
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Saturday, September 24

9:00–12:00 Excursion to the astronomical and cosmological sights of Prague guided
by Michal Kř́ıžek (total length about 6 km):

In the footsteps of Albert Einstein in Prague

We will meet at 9:00 in front of the main gate of the Institute of Mathematics
at Žitná 25. From here we shall shortly walk to the Faculty of Science of Charles
University at Viničná Street no. 7/1594. A memorial plaque (see Figure 1) dedi-
cated to Albert Einstein is located in the lobby at the ground floor. It was unveiled
on the 10th anniversary of his death in 1965 and recalls that Einstein worked in
this building in 1911–1912. Einstein had his office there, where he found the calm
necessary to formulate basic ideas of his General Theory of Relativity. In this build-
ing, Einstein also taught his seminar on theoretical physics for students and met
the famous Professor of mathematics Georg Pick (1859–1942) with whom he became
friends soon after arriving in Prague. Pick worked on non-Euclidean geometries and
taught Einstein mainly foundations of tensor calculus. In Prague, Einstein got his
first full professorship and was at the beginning of his fame. His stay there meant
an important working period in his life. Note that at the turn of 1879/1880, the
Institute of Physics (headed by Ernst Mach) of the German University moved from
Ovocný trh to the building in Viničná.

Figure 1: Memorial plaque dedicated to Albert Einstein in Viničná Street 7.
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Figure 2: Memorial plaque with bust dedicated to Albert Einstein.

Then we will visit another memorial plaque with Einstein’s bust (see Figure 2) in
Lesnická Street no. 7/1215 in Smı́chov (in 1911 this street was called Třeb́ızského).
In this house, Einstein lived with his family, in particular, his wife Mileva (born
Marić) and two sons Hans Albert and Eduard. This bronze memorial plaque was
unveiled in 1979 on the 100th anniversary of Einstein’s birth.

The third memorial plaque dedicated to Einstein [4] was unveiled on the 14th
March 1999 (see Figure 3) on the occasion of the 120th Einstein’s anniversary in
the Old Town Square (Staroměstské náměst́ı) no. 17/551. The plaque contains the
following English (and also Czech) text:

“Here, in the salon of Mrs. Berta Fanta, Albert Einstein, Professor at Prague
University in 1911 to 1912, founder of the Theory of Relativity, Nobel Prize Winner,
played the violin and met his friends, famous writers Max Brod and Franz Kafka.”

225



Figure 3: Installation of the memorial plaque dedicated to Albert Einstein in the
Old Town Square 17.

After his arrival in Prague in 1911, Einstein often visited this house and met
there the Jewish intellectuals Max Brod, Hugo Bergmann, Felix Weltsch, and also
Franz Kafka, see [1, pp. 153, 186], [6, p. 402], [7, p. 7]. He took part in Tuesday’s
evening lectures and philosophical debates on diverse topics. Franz Kafka gradually
stopped going there until 1914 (see [1, p. 152]), when Einstein was not anymore in
Prague.

It was the above-mentioned Georg Pick who introduced Einstein into this com-
pany. In particular, two topics brought Pick and Einstein together. The first of them
was discussion about mathematical methods that later Einstein used to formulate his
General Theory of Relativity. Their second common interest was music. Max Brod
recalls that in the Salon of Berta Fantová1 he played on piano and was accompanied
by Einstein on violin performing together the Mozart violin sonata (see [1, p. 153]).
They also took part in philosophical discussions in that Salon.

The relief of the plaque recalls the time of Einstein’s Prague residence, his first
considerations about the General Theory of Relativity, namely, bending of the light
beam nearby the Sun (see Figure 4). This is represented by a curve above the Charles
Bridge, where Einstein walked and thought of his own lectures on physics. Old Town
Bridge Tower on the left depicting the Aristotelian cosmological idea of the universe
reminds us that Einstein had no idea at that time that his theory will become the

1Berta Fantová (1865–1918), the mother of Professor Otto Fanta, see the letter of Max Brod to
Franz Kafka from the 20th December 1918 in [6, p. 212].
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Figure 4: Artistic design of the main ideas of Albert Einstein.

basis of modern cosmology. The formula E = Mc2 on the plaque resemble Einstein’s
handwriting. Einstein used unusual today symbol M for the mass, see [2]. The
curved hole in violin advocates the symbol for a double integral.

The artistic processing of the plaque was done in 1998 by Zdeněk Kolářský un-
der documentation and consultations with Michal Kř́ıžek and Alena Šolcová. This
project was supported by the Union of Czech Mathematicians and Physicists and
the City Hall of Prague, which is marked at the bottom of the plaque.

The painting on the next Storch House no. 16/552 recalls the half-a-year long
visit paid to Prague by Giordano Bruno in 1588. A memorial plaque placed at the
Planetum in Prague recognizes his work.

Professor of physics Ernst Mach had lived for some time in the house no. 19/549
situated on the right part of the Einstein memorial plaque. A bust honoring Mach
is located at Ovocný trh no. 7/562.

The Old Town Square is one of the most famous and important places in Prague.
It is located in the very historical center of the city. Since the 11th and 12th centuries,
when it was a crossroad of merchant roads and the marketplace, the Square has
witnessed both the most glorious and also the most tragic events in the history of
the Czech lands.

The most admired and sought-after monument there is obviously the Astronom-
ical Clock on the Old-Town Hall, also known as the Prague Horologe. It consists of
three units: moving statutes of the 12 apostles that appear each hour in two small
windows in the upper part of the Clock, the astronomical clock with its dial, and
a round calendar dial with the signs of the zodiac. The mathematical model of the
Astronomical Clock was developed by the Czech astronomer and mathematician Jan
Ondřej̊uv called Šindel, professor and also the rector of Prague University.
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The astronomical clock was constructed around the year 1409 by clock-master
Mikuláš of Kadaň under Šindel’s supervision. In about 1490, the calendar dial was
placed under the astronomical dial. In the centuries which followed, the complex
mechanism was enhanced and new statues were added.

The astronomical dial is an astrolabe on the clock face using a stereographic
projection with the center on the North Pole of the celestial sphere. The dial shows
various ways of measuring time over the course of centuries. The outer black ring
bears gold Arabic numerals showing the old Czech hours counted from the sunset of
the previous day. Roman numerals stand for what is called the German (or Italian)
time introduced in the period of Emperor Rudolf II. Black Arabic numerals mark
uneven planet hours, the length of which changes during the year. Three rotating
pointers show the place of the Sun on the ecliptic, the movement and phases of the
Moon as well as the rising, culmination and setting of individual signs of the Zodiac.
The pointer decorated with a small golden star indicates the celestial time. In [5,
pp. 225–252], you can find which mathematics is hidden behind Prague’s Horologe.

After you get seen enough of the Prague Astronomical Clock, look down at the
pavement to see the Prague Meridian which was formerly used by Prague citizens to
determine the time. It was defined by the shadow cast of the column of Our Lady at
Noon [Mariánský sloup]. Unfortunately, the original column was destroyed in 1918,
but at present there is a replica. The metal memorial plaque on the pavement reads:
“Meridianus quo olim tempus Pragense dirigebatur” [The meriadian according to
which the time used to be defined.] Later time began to be measured more exactly
at the Astronomical Tower of Klementinum which you will be invited to visit later.

The Old Town Square and its surrounding streets also commemorate a number of
outstanding scientists and artists who lived in Prague. For example, the Church of
Our Lady (Týnský chrám) is the final resting place of the great Danish astronomer
Tycho Brahe (1546–1601). He was probably the best observer of the heavens be-
fore the invention of telescope. He is buried in front and to the right of the altar.
The nearest pillar holds a tombstone made of rose marble from nearby Slivenec,
portraying Tycho Brahe in relief and accompanied with the following inscriptions in
Latin:

“Esse potius, quam haberi” [Rather to be somebody than only to give such an
impression] and “ Nec fasces, nec opes, sola artis sceptra perennant” [Neither power,
nor riches, only the sceptre of knowledge persits.]

The house on the corner of Maiselova and Kaprova Streets is where the above-
mentioned famous Czech writer Franz Kafka was born. A memorial plaque has been
placed on this house. This location is called Franz Kafka Square.

The campus of Charles University at Celetná Street incorporates Karolinum
which is also accessible from Železná Street. It is the main historical building of
Charles University, founded by the Czech king and Roman emperor Charles IV
in 1348 and being the first university in Central Europe. Although Karolinum is
a national historical monument, it continues to serve as an important university
building. Its Great Hall is where graduation ceremonies and other important events
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still take place. In another hall of Karolinum – its Vlastenecký sál [Hall of Patriots]
– a famous lecture “Über das farbige Licht der Doppelsterne” [On the color light of
binary stars] was given by Christian Doppler (1804–1853) in 1842. There he pre-
sented his concept of the phenomenon that was later given his name – the Doppler
effect. In 2006, a memorial plaque honoring Doppler was placed on the house at
U Obecńıho dvora no. 7/799, where he lived from 1843 to 1847.

A bust of mathematician and philosopher Bernard Bolzano (1781–1848), who
was also among those who heard Doppler’s famous lecture, is placed to the right
of the main entrance to the Hall of Patriots of Karolinum. A memorial plaque in
honor of Bernard Bolzano was placed on the house called “The Four Stone Columns”
in Celetná Street no. 25/590, where he spent his last years. Bolzano wrote among
others an interesting treatise: Paradoxes of infinity. He also constructed a continuous
function which has no derivative at any point.

The former university hall of residence on Ovocný trh no. 12/573 was where
Johannes Kepler lived between the years 1604 and 1607. It was where he discov-
ered that the orbit of Mars is elliptical. In 1604, he observed the supernova in the
constellation Ophiuchus from the wooden observational tower in the garden of that
university building. A memorial plaque was placed on the left side of the passage.

Eminent Czech physicist, mathematician, astronomer, and physician Jan Marek
Marci from Kronland stayed in a home on Melantrichova Street no. 12/472 in the
period 1635–1667. Twenty years before Newton, he carefully described the dispersion
and diffraction of light, studied the color spectrum of the rainbow, etc.

In 1911, the Montmartre cabaret was opened in Řetězová Street no. 7/224.
Albert Einstein and his older colleague Georg Pick were frequent visitors there. Not
far away, in Husova street no. 5/240, one can find a new plaque dedicated to Professor
Friedrich Reinitzer who discovered the first liquid crystal, see [3].

In Prague’s Old Town Klementinum you can find an observatory dating back
to mid-18th century and the oldest meteorological station in Central Europe which
keeps an uninterrupted record of meteorological data since 1775. Klementinum was
originally a Dominican monastery. In the 16th century, it became the seat of a Jesuit
College and University. Today Klementinum is a national cultural monument and
the seat of the National Library of the Czech Republic. The whole large complex of
buildings is dominated by the 52-meter high Astronomical Tower, which was com-
pleted in 1722. It is topped with a lead sculpture of Atlas bearing on his shoulders
an armilar sphere (the symbol of astronomy). Due to the prominent Jesuit math-
ematician, physicist and astronomer Josef Stepling, the tower was equipped with
various astronomical instruments. Fifteen sundials can be found on the premises of
Klementinum. After an independent Czechoslovakia was formed in 1918, the Kle-
mentinum observatory became the seat of of the Czechoslovak Astronomical Society
for some period.

Leaving Klementinum, you catch sight of the Old Town Bridge Tower which is
a gateway to the famous Charles Bridge. The tower is richly decorated with sculp-
tures. Its decorations include the Aristotelian cosmological model of the universe.
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It was probably designed by Emperor Charles IV together with Master Havel from
Strahov. The upper part depicts the stable sphere of stars, under which there are
a supra-lunar and sub-lunar spheres accompanied with representations of human
vices. The number of decorations is connected with periods of time: the number of
months in a year, days in a week and hours in a day. The year, date and time chosen
for the construction of the Bridge Tower is also remarkable: 1357. If these numbers
are completed as follows

1 3 5 7 9 7 5 3 1,

one creates what is called a palindrome comprising all one-figure odd natural numbers
[5, p. 113]. Emperor Charles IV chose that special sequence on the recommendation
of Master Havel from Strahov as the best moment to lay the cornerstone of the Stone
Bridge (from 1870 named the Charles Bridge), namely, in 1357 of the Julian calendar
on the 9th July at 5 o’clock 31 minutes.
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