Skip to content
Physics Foundations Soc.
Main Navigation
Home
Members
Dynamic Universe
Period Doubling
Mathematical Visualizations
English
Suomi
English
Suomi
Appearance
Menu
Return to top
On this page
Mathematical Formulas for Presentations
Helper formulas extracted from visual index for presentation use
d
s
2
=
c
2
d
τ
2
=
(
1
−
2
G
M
r
c
2
)
c
2
d
t
2
−
(
1
−
2
G
M
r
c
2
)
−
1
d
r
2
−
r
2
(
d
θ
2
+
sin
2
θ
d
ϕ
2
)
d
s
2
c
2
=
d
τ
2
=
(
1
−
2
G
M
r
c
2
)
d
t
2
−
(
1
−
2
G
M
r
c
2
)
−
1
d
r
2
c
2
−
r
2
d
θ
2
c
2
d
s
2
c
2
=
d
τ
2
=
(
1
−
2
G
M
r
c
2
)
d
t
2
d
τ
=
1
−
2
G
M
r
c
2
d
t
d
τ
a
=
1
−
2
G
M
r
a
c
2
d
t
d
τ
b
=
1
−
2
G
M
r
b
c
2
d
t
d
τ
b
d
τ
a
=
1
−
2
G
M
r
b
c
2
1
−
2
G
M
r
a
c
2
=
f
b
f
a
0
=
(
1
−
2
G
M
r
c
2
)
d
t
2
−
(
1
−
2
G
M
r
c
2
)
−
1
d
r
2
c
2
−
r
2
d
θ
2
c
2
d
t
2
=
(
1
−
2
G
M
r
c
2
)
−
1
d
r
2
+
r
2
d
θ
2
(
1
−
2
G
M
r
c
2
)
c
2
d
t
=
(
1
−
2
G
M
r
c
2
−
1
d
r
)
2
+
(
r
d
θ
)
2
1
−
2
G
M
r
c
2
c
=
d
x
′
c
′
d
t
=
(
(
1
−
G
M
r
c
2
)
−
1
d
r
)
2
+
(
r
d
θ
)
2
(
1
−
G
M
r
c
2
)
c
=
d
x
′
c
′
d
t
=
(
(
1
−
G
M
r
c
2
)
−
1
d
r
)
2
+
(
r
d
θ
)
2
+
(
r
sin
θ
d
ϕ
)
2
(
1
−
G
M
r
c
2
)
c
=
d
x
′
c
′
d
t
=
(
1
−
2
G
M
r
c
2
−
1
d
r
)
2
+
(
r
d
θ
)
2
+
(
r
sin
θ
d
ϕ
)
2
1
−
2
G
M
r
c
2
c
=
d
x
′
c
′
d
r
′
=
1
−
2
G
M
r
c
2
−
1
d
r
d
r
′
=
(
1
−
G
M
r
c
2
)
−
1
d
r
d
R
2
+
d
r
2
=
d
r
′
2
d
R
+
d
r
+
d
r
′
c
+
c
′
+
v
c
′
=
1
−
2
G
M
r
c
2
c
c
′
=
(
1
−
G
M
r
c
2
)
c
f
′
=
1
−
2
G
M
r
c
2
f
f
′
=
(
1
−
G
M
r
c
2
)
f
v
=
2
G
M
r
v
=
1
−
(
1
−
G
M
r
c
2
)
2
c
d
r
=
1
−
2
G
M
r
c
2
d
r
′
d
r
=
(
1
−
G
M
r
c
2
)
d
r
′
d
R
=
2
G
M
r
c
2
d
r
′
d
R
=
G
M
r
c
2
(
2
−
G
M
r
c
2
)
d
r
′
cos
ϕ
r
=
d
r
d
r
′
=
1
−
2
G
M
r
c
2
cos
ϕ
r
=
d
r
d
r
′
=
(
1
−
G
M
r
c
2
)
cos
ϕ
r
=
d
r
d
r
′
=
1
−
2
G
M
r
c
2
=
1
2
cos
π
4
=
d
r
d
r
′
=
(
1
−
G
M
r
c
2
)
cos
ϕ
r
=
d
r
d
r
′
=
1
−
2
G
M
r
c
2
=
1
2
1
−
v
2
c
2
=
1
−
2
G
M
r
c
2
1
−
v
2
c
2
=
(
1
−
G
M
r
c
2
)
R
(
r
)
=
∫
tan
arccos
1
−
2
G
M
r
c
2
d
r
=
2
2
G
M
c
2
r
−
2
G
M
c
2
+
C
R
(
r
)
=
∫
tan
arccos
(
1
−
G
M
r
c
2
)
d
r
=
2
G
M
c
2
(
2
r
c
2
G
M
−
1
−
arctanh
2
r
c
2
G
M
−
1
)
+
C
R
′
(
2
2
G
M
c
2
)
=
1
r
π
/
4
=
4
G
M
c
2
r
45
∘
=
4
G
M
c
2
r
45
∘
=
(
2
+
2
)
G
M
c
2
r
π
/
2
=
2
G
M
c
2
r
90
∘
=
2
G
M
c
2
r
90
∘
=
G
M
c
2
f
r
,
v
−
f
r
0
,
v
0
f
r
0
,
v
0
=
f
′
(
1
−
G
M
r
c
2
)
1
−
v
r
2
c
2
f
′
(
1
−
G
M
r
0
c
2
)
1
−
v
0
2
c
2
−
1
f
r
−
f
r
0
,
v
0
f
r
0
,
v
0
=
f
′
(
1
−
G
M
r
c
2
)
1
−
v
r
2
c
2
f
′
(
1
−
G
M
r
0
c
2
)
1
−
v
0
2
c
2
−
1
f
r
,
v
−
f
r
0
,
v
0
f
r
0
,
v
0
=
f
′
(
1
−
G
M
r
c
2
)
1
−
v
r
2
c
2
f
′
(
1
−
G
M
r
0
c
2
)
1
−
v
0
2
c
2
−
1
λ
¯
e
=
ℏ
m
e
c
=
ℏ
0
m
e
∫
G
m
′
m
r
m
′
=
G
M
m
R
I
=
G
M
″
m
R
∫
S
3
G
m
′
m
r
=
G
M
m
R
I
=
G
M
″
m
R
S
V
S
3
=
2
π
2
R
3
M
=
Σ
m
′
∫
0
π
2
sin
2
θ
π
θ
d
θ
≈
0.775929
∫
0
2
π
2
sin
2
θ
π
θ
d
θ
≈
0.99133